-
-
Delaunay Triangulation 定义:
-
Let S be a set of points in the plane. A triangulation T is a Delaunay triangulation of S if for each edge e of T there exists a circle c with the following properties:
(1) The endpoints of edge e are on the boundary of c.
(2) No other vertex of S is in the interior of c.
If no four points of S are cocircular then the Delaunay triangulation is unique. - 大白话: 设S为源点集,若一个三角剖分T满足以下条件,则称其为点集S的一个Delaunay三角剖分:对T中的每一条边e,都存在一个圆c,1-边e的两个端点都在圆c上(感觉这个地方有问题,应该是对于T中的每一个三角形,其外接圆内不包含任何其他顶点),2-并且S中所有其他的顶点都不在圆内(可以在圆上或者在圆外)。如果所有顶点中,没有四个或四个以上来自S的顶点在这样的伴生圆上,那么这个Delaunay剖分是唯一的。
-
Let S be a set of points in the plane. A triangulation T is a Delaunay triangulation of S if for each edge e of T there exists a circle c with the following properties:
-
-
Constrained Delaunay Triangulation 定义:
-
Let G be a straight-line planar graph. A triangulation T is a constrained Delaunay triangulation (CDT) of G if each edge of G is an edge of T and for each remaining edge e of T there exists a circle c with the following properties:
(1) The endpoints of edge e are on the boundary of c.
(2) If any vertex v of G is in the interior of c then it cannot be “seen” from at least one of the endpoints of e (i.e., if you draw the line segments from v to each endpoint of e then at least one of the line segments crosses an edge of G). -
大白话: 若三角剖分满足以下条件,则称其为约束性Delaunay三角剖分:若G中的每一条边(输入中的限制边)都在最后生成的三角剖分T的边中,并且所有新生成的边都满足1-新生成的边e的端点都在对应伴生圆上,2-若圆内有其他顶点(即除组成此三角外的其他顶点),则此边e对圆内的顶点v是不可见的。
我的理解: 如下图(图片来自下方论文,进行了修改)所示,若三角划分T中的一个三角形t,其外接圆中包含其他顶点(如图中绿点),则t中的三条边对于此绿点来说都是不可见的(即t的任意边的两个端点与绿点连线必然会和其他边相交,如蓝色虚线所示,其与源输入的限制边相交,可以理解为图中的粗边挡住了绿点,使得三角形无法通过光线/直线看到绿点),满足这样条件的三角剖分叫限制性Delaunay三角剖分。若T中所有的三角形t,其外接圆内都不存在其他的点,则这样的三角剖分就成为了Delaunay三角剖分。
-
Let G be a straight-line planar graph. A triangulation T is a constrained Delaunay triangulation (CDT) of G if each edge of G is an edge of T and for each remaining edge e of T there exists a circle c with the following properties:
Constrained Delaunay Triangulation定义的理解
最新推荐文章于 2023-08-17 20:33:40 发布