GPT实战系列-ChatGLM3管理工具的API接口

本文介绍了如何在ChatGLM3中配置和使用外部工具,如查询股票信息和天气的querystock工具,以构建大模型查询助手。详细讲解了如何调用工具及参数设置,展示了通过模型整合工具调用的实际操作过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPT实战系列-ChatGLM3管理外部借力工具

用ChatGLM的工具可以实现很多查询接口和执行命令,外部工具该如何配置使用?如何联合它们实现大模型查询助手功能?例如调用工具实现股票信息查询,网络天气查询等助手功能。

LLM大模型相关文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练


配置tools信息

tools = [
	{
   'name': 'querystock', 
     'description': '查询指定股票的实时价格', 
     'parameters': 
     	{
   'type': 'object', 
         'properties'
### 不同大模型的参数量对比 在人工智能领域,大模型通常指具有数十亿甚至上万亿参数规模的神经网络模型。这些模型通过大规模数据训练,在自然语言处理、计算机视觉等领域表现出卓越性能。 #### 参数量定义与重要性 参数量是指模型中可学习权重的数量,直接影响模型的能力边界和计算需求。更大的参数量往往意味着更强的表现能力,但也伴随着更高的资源消耗和更复杂的优化过程[^1]。 #### 主流大模型参数量比较 以下是部分主流大模型及其对应的参数量: 1. **GPT系列** - GPT-3:约1750亿参数[^4]。 - GPT-4:具体参数未公开,但推测远超GPT-3。 2. **BERT系列** - BERT-Large:约3.4亿参数[^5]。 - RoBERTa:同样约为3.4亿参数,但在某些场景下表现优于原始BERT[^6]。 3. **T5系列** - T5-XL:约30亿参数[^7]。 - T5-XXL:超过100亿参数。 4. **PaLM (Pathways Language Model)** - PaLM 1:约5400亿参数[^8]。 - PaLM 2:进一步扩展至更高参数范围。 5. **Chinese Models** - THUDM/chatGLM3-6B:约60亿参数[^9]。 - Baichuan-13B:约130亿参数[^10]。 #### 微调策略的影响 对于实际应用场景而言,并非所有情况都需要使用完整的大型模型。LoRA(Low-Rank Adaptation)技术允许仅调整少量新增参数即可完成特定任务定制化工作,其参与训练的参数数量一般处于百万到千万级别之间[^2]。然而需要注意的是,如果目标域数据分布显著区别于源预训练语料库,则可能需要考虑采用全量微调方式来获得最佳效果。 #### 实际部署案例分析 以某开源项目为例,《大模型项目实战:多领域智能应用开发》一书中介绍了如何利用本地存储路径配置ChatGLM3以及嵌入式向量表示模型并运行API服务器监听指定端口号的服务流程[^3]。此实践展示了即使是在有限硬件条件下也能有效运用较小型号的大规模预训练架构服务于个性化对话系统构建之中。 ```python MODEL_PATH="./dataroot/models/THUDM/chatglm3-6b" EMBEDDING_PATH="./dataroot/models/BAAI/bge-large-zh-v1.5" # 启动服务脚本命令 python openai_api_demo/api_server.py --model_path $MODEL_PATH --embedding_path $EMBEDDING_PATH --port 8000 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alex_StarSky

你的鼓励是创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值