Advanced Data Analytics Using Python_ With Machine Learning, Deep Learning and NLP Examples

本书提供了使用 Python 进行高级数据分析的方法,涵盖了机器学习、深度学习和自然语言处理的应用实例。书中详细讲解了如何在不同的数据库环境中进行数据提取、转换和加载(ETL),并探讨了监督学习、无监督学习、深度学习、时间序列分析以及大规模数据分析的相关内容。

目录

  1. 简介

    • 为什么选择 Python?
    • 何时避免使用 Python
    • Python 中的面向对象编程
    • 调用其他语言代码
    • 将 Python 模型暴露为微服务
    • 高性能 API 和并发编程
  2. 使用 Python 进行 ETL(结构化数据)

    • MySQL
    • Elasticsearch
    • Neo4j Python 驱动
    • 内存数据库
    • MongoDB(Python 版)
    • Pandas 框架
  3. 使用 Python 的监督学习

    • 降维
    • 相关分析
    • 主成分分析
    • 互信息
    • 分类
    • 半监督学习
    • 决策树
    • 随机森林分类器
    • 朴素贝叶斯分类器
    • 支持向量机
    • 最近邻分类器
    • 情感分析
    • 图像识别
    • 回归
    • 最小二乘估计
    • 逻辑回归
    • 分类和回归
    • 处理类别数据
  4. 无监督学习:聚类

    • K-means 聚类
    • 肘部法则选择 K
    • 距离或相似度度量
    • 层次聚类
    • 图论方法
    • 聚类结果的评价
  5. 深度学习和神经网络

    • 反向传播
    • TensorFlow
    • 循环神经网络
  6. 时间序列分析

    • 时间序列中的趋势分析
    • 消除趋势和季节性
    • 平稳时间序列
    • 自相关和协方差函数
    • 时间序列分析方法
  7. 大规模数据分析

    • Hadoop
    • MapReduce 编程
    • Spark
    • 云端分析
    • 物联网分析
  8. 附录

    • 索引
    • 作者简介
    • 技术审查者简介
    • 致谢

总结

本书旨在通过实例详细介绍如何利用 Python 进行数据分析和处理,包括结构化和非结构化数据的处理、监督和无监督学习算法的实现、深度学习模型的构建与训练以及时间序列数据的分析方法。此外,本书还探讨了如何在大数据环境下进行高效的数据分析,并介绍了在云计算和物联网环境下的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值