pytorch(三):天气识别

 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊|接辅导、项目定制 

1 开发环境

电脑系统:Windows 10

编译器:Jupter Lab

语言环境:Python 3.8

深度学习环境:Pytorch

2 前期准备

2.1 设置GPU

        由于实验所用电脑显卡维集成显卡(intel(r) UHD graphics),因此无法使用GPU

# 1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
 
import os,PIL,pathlib
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
device

        输出结果:

2.2  准备数据

2.2.1 准备数据

数据下载链接(  提取码:weat)

2.2.2导入数据

import os,PIL,random,pathlib
data_dir = 'data/weather_photos/'
data_dir = pathlib.Path(data_dir)
 
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[1] for path in data_paths]
classNames
 
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # resize输入图片成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 数据标准化处理,转换为标准正太分布
])
 
total_data = datasets.ImageFolder(data_dir, transform=train_transforms)
total_data

        输出结果:

  

2.2.3 数据集划分

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
train_size,test_size
 
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    break

        输出结果:

 3 构造简单的CNN

        与上一次课题项目类似,这次仍然采用torch.nn.Conv2d、torch.nn.Linear、torch.nn.MaxPool2d等来进行网络构建(详见pytorch(二):彩色图片识别_放鹿的散妃的博客-CSDN博客),关于这三个函数的详解,这里不再介绍。

        在卷积层和全连接层之间,这里使用x.view(),这里可以使用之前使用的torch.flatten()或torch.nn.Flatten。torch.nn.Flatten()与TensorFlow中的Flatten()层类似,仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()不会改变x本身,而是返回一个新的张量。而x.view()则是直接在原有数据集上进行操作。

import torch.nn.functional as F
 
num_classes = 4  # 图片的类别数
class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, num_classes)
 
    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn4(self.conv4(x)))
        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool(x)
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)
 
        return x
 
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
 
model = Network_bn().to(device)
model

        输出结果:

        其整个网络结构如下图所示:

image.png

 

 4 训练模型

4.1 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

4.2 编写训练函数

(1)optimizer.zero_grad()
        函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
(2)loss.backward()
        Pytorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
        具体来说,torch.tensor是autograd包的基础类,如果设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果做完运算后使用tensor.backward(),所有的梯度就会自动计算,tensor的梯度将会累加到它的.grad属性里面。
        更具体的说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个权重w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
        如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。
(3)optimizer.step()
        step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
        注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是loss.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)  # 批次数目,1875(60000/32)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
 
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
 
        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
 
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新
 
        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
 
    train_acc /= size
    train_loss /= num_batches
 
    return train_acc, train_loss

4.3 编写测试函数

        测试函数和训练函数大致相同,只是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
 
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
 
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
 
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

5 正式训练

epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
 
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
 
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
 
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
 
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')

6 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

7 总结

        本节与前面两个课题相比,差别不大,除了数据集不同,另外网络稍微有一点差异外,基本没有太大变化。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值