使用pyflux包进行var预测

本文介绍如何使用pyflux库构建向量自回归(VAR)模型进行预测。VAR模型用于捕捉多个时间序列间的线性相关性,涉及单因素和多因素情况。通过线性最小二乘法确定模型参数,并通过pyflux进行数据处理、模型拟合和预测。
摘要由CSDN通过智能技术生成

之前说装完pyflux来写一下怎么利用pyflux来预测,这段时间也一直在test,只想说pyflux包真的太好用了太好用了太好用了~

今天说一下var向量自回归模型和怎么利用pyflux实现的。

量自回归VAR)是一种随机过程模型,用于捕获多个时间序列之间的线性相关性。VAR的实质是考察多个变量之间的动态互动关系,一个时间点上变量的值线性地依赖于前一时刻不同变量的值(包括其自身的值)。因此VAR中的所有变量都以同样的方式输入模型:每个变量都有一个方程,根据其自身的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值