题目
从瑞神家打牌回来后,东东痛定思痛,决定苦练牌技,终成赌神!
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):
同花顺: 同时满足规则 5 和规则 4.
炸弹 : 5张牌其中有4张牌的大小相等.
三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
同花 : 5张牌都是相同花色的.
顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
三条: 5张牌其中有3张牌的大小相等.
两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
一对: 5张牌其中有2张牌的大小相等.
要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
Input第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4).
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2)).Output输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)
Examples
Input
5 2
1 0 3 1
Output
0 0 0 0 8 0 12 36 0
Input
25 4
0 0 24 3
output
0 2 18 0 0 644 1656 36432 113344
做法
数据结构
注意到9个条件中有多个条件跟某个数字出现的次数有关,故可定义一个he数组,并利用其对所属牌型进行判断
struct pai
{
int a,b;
bool operator<(const pai &p) const//先按大小排序再按花色排序
{
return a!=p.a?a<p.a:b<p.b;//怎么能忘记return呢
}
}p[5],p1[5];//p记录选中的牌,p1记录选中的排好序后的牌
bool xuanze[25][4]={};//记录是否被选到
int shuzi[25]={};//记录每个数字有多少个
int sum[9]={};//记录不同牌型的数量
解法
1、录入已取出的两张牌记录在p中,count记录取出的牌数,更新xuanze和shuzi数组
2、调用递归函数meiju(当前枚举到的元素的行,当前枚举到的元素的列),在p中放满5个元素时转到3,否则转到4
3、将p元素值赋给p1,对p1进行sort,接着根据在往p中放入元素时更新的shuzi数组的值计算he数组,存储不同数字和的个数。接着利用不同牌型的特点,判断枚举的这5张牌所满足的牌型。对相应的牌型对应的sum进行加一操作。
4、根据函数传入的参数知此时枚举到数组第n行的第m张牌,按照枚举顺序下一张该从第n行的第m+1张牌开始枚举,并根据新加入p的牌对shuzi和xuanze数组进行更新,具体枚举及更新步骤如下:
for(n;n<b;n++)
{
if(xuanze[m][n]!=1)
{
xuanze[m][n]=1;
p[count1].a=m;
p[count1].b=n;
count1++;
shuzi[m]++;
meiju(m,n);
count1--;
xuanze[m][n]=0;
shuzi[m]--;
}
}
for(m=m+1;m<a;m++)
for(n=0;n<b;n++)//注意for循环的第一个条件用于赋for循环的初值&初始条件
{
if(xuanze[m][n]!=1)
{
xuanze[m][n]=1;
p[count1].a=m;
p[count1].b=n;
count1++;
shuzi[m]++;
meiju(m,n);
count1--;
xuanze[m][n]=0;
shuzi[m]--;
}
}
5、枚举结束后考虑到有部分枚举会满足多个牌型条件,导致其在多个数组中出现,所以对包含重复元素的sum,用优先级低减去优先级高的。最后依次输出sum的值。
错误
1、这个题一开始尝试用排列组合解、、、太麻烦了、、、真的数学不好不要尝试、、两个小时都没写出来
2、注意递归调用来枚举时要考虑清楚函数内和函数间参数的变化,如果不好考虑清楚的话可以用循环代替递归:三层循环,每层循环的初始条件都从上一层循环所到位置的后一个开始,防止重复遍历。
3、可将二维数组转变为一维数组存储遍历条件,具体转换为一维数组第i个元素对应二维数组的i/A行i%A列的元素
代码
#include<iostream>
#include<algorithm>
using namespace std;
struct pai
{
int a,b;
bool operator<(const pai &p) const//先按大小排序再按花色排序
{
return a!=p.a?a<p.a:b<p.b;//怎么能忘记return呢
}
}p[5],p1[5];
int a,b,a1,a2,b1,b2;
int count1=0;
bool xuanze[25][4]={};//记录是否被选到
int shuzi[25]={};//记录每个数字有多少个
int sum[9]={};//记录不同牌型的数量
int m=0,n=0;
void meiju(int m,int n)
{
// for(int x=0;x<count1;x++)
// cout<<p[x].a<<' '<<p[x].b<<' ';
// cout<<endl;
if(count1==5)
{
for(int j=0;j<5;j++)
{
p1[j].a=p[j].a;
p1[j].b=p[j].b;
}
sort(p1,p1+5);
// for(int x=0;x<count1;x++)
// cout<<p1[x].a<<' '<<p1[x].b<<' ';
// cout<<endl<<endl;
int he[5]={0,0,0,0,0};//记录不同个数的数字个数
for(int j=0;j<25;j++)
he[shuzi[j]]++;
if(p1[0].a==p1[1].a-1&&p1[1].a==p1[2].a-1&&p1[2].a==p1[3].a-1&&p1[4].a==p1[3].a+1
&&p1[0].b==p1[1].b&&p1[0].b==p1[2].b&&p1[0].b==p1[3].b&&p1[0].b==p1[4].b)
sum[0]++;
if(he[4]!=0)
sum[1]++;
if(he[3]!=0&&he[2]!=0)
sum[2]++;
if(p1[0].b==p1[1].b&&p1[0].b==p1[2].b&&p1[0].b==p1[3].b&&p1[0].b==p1[4].b)
sum[3]++;
if(p1[0].a==p1[1].a-1&&p1[1].a==p1[2].a-1&&p1[2].a==p1[3].a-1&&p1[4].a==p1[3].a+1)
sum[4]++;
if(he[3]!=0)
sum[5]++;
if(he[2]==2)
sum[6]++;
if(he[2]!=0)
sum[7]++;
return;
}
for(n;n<b;n++)
{
if(xuanze[m][n]!=1)
{
xuanze[m][n]=1;
p[count1].a=m;
p[count1].b=n;
count1++;
shuzi[m]++;
meiju(m,n);
count1--;
xuanze[m][n]=0;
shuzi[m]--;
}
}
for(m=m+1;m<a;m++)
for(n=0;n<b;n++)//注意for循环的第一个条件用于赋for循环的初值&初始条件
{
if(xuanze[m][n]!=1)
{
xuanze[m][n]=1;
p[count1].a=m;
p[count1].b=n;
count1++;
shuzi[m]++;
meiju(m,n);
count1--;
xuanze[m][n]=0;
shuzi[m]--;
}
}
}
int main()
{
cin>>a>>b;
cin>>a1>>b1>>a2>>b2;
p[count1].a=a1;
p[count1].b=b1;
count1++;
p[count1].a=a2;
p[count1].b=b2;
count1++;
xuanze[a1][b1]=1;
xuanze[a2][b2]=1;
shuzi[a1]++;
shuzi[a2]++;
meiju(0,0);
sum[3]-=sum[0];
sum[4]-=sum[0];
sum[5]-=sum[2];
sum[7]-=(sum[2]+sum[6]);
sum[8]= (a*b-2)*(a*b-3)*(a*b-4)/6-(sum[0]+sum[1]+sum[2]+sum[3]+sum[4]+sum[5]+sum[6]+sum[7]);
for(int i=0;i<9;i++)
cout<<sum[i]<<' ';
cout<<endl;
return 0;
}