题意
从瑞神家打牌回来后,东东痛定思痛,决定苦练牌技,终成赌神!
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):
同花顺: 同时满足规则 5 和规则 4.
炸弹 : 5张牌其中有4张牌的大小相等.
三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
同花 : 5张牌都是相同花色的.
顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
三条: 5张牌其中有3张牌的大小相等.
两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
一对: 5张牌其中有2张牌的大小相等.
要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
Input
第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4).
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2)).
Output
输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)
思路
定义一个card结构体保存大小和花色,由于输入给出了两张牌,剩下的三张牌通过三层循环选出(判断不要和之前选出的重复),按大小排序,用桶来统计一下选出的五张牌的大小出现的的次数,之后按照优先级规则填入一个bool数组,具体的判断按题目要求,只需要根据统计的次数和排好序的5张卡很容易,当满足4、5时第一个要设置为true。
由于三重循环会出现顺序重复的问题,所以结果要除以 3!才得到正确结果。
总结
题面比较复杂,看懂之后思路挺简单,但是写代码的过程中要注意细节问题
代码
#include<iostream>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
struct card
{
int a,b;
card(){}
card(int a0,int b0)
{
a=a0;b=b0;
}
bool operator <(card e)
{
return a<e.a;
}
};
int main()
{
int ans[10];
bool r[10];
int aCnt[25];
memset(ans,0,sizeof(ans));
card s[5];
int A,B;
int a1,b1,a2,b2;
scanf("%d%d",&A,&B);
scanf("%d%d%d%d",&a1,&b1,&a2,&b2);
card* c=new card[A*B+5];
int cnt=0;
s[0].a=a1;s[0].b=b1;
s[1].a=a2;s[1].b=b2;
for(int a=0;a<A;a++)
{
for(int b=0;b<B;b++)
{
if((b==b1&&a==a1)||(b==b2&&a==a2))
continue;
c[cnt].a=a;
c[cnt].b=b;
cnt++;
}
}
for(int i=0;i<cnt;i++)
{
if((c[i].a==a1&&c[i].b==b1)||(c[i].a==a2&&c[i].b==b2))
continue;
for(int j=0;j<cnt;j++)
{
if((c[j].a==a1&&c[j].b==b1)||(c[j].a==a2&&c[j].b==b2)||(j==i))
continue;
for(int k=0;k<cnt;k++)
{
if((c[j].a==a1&&c[j].b==b1)||(c[j].a==a2&&c[j].b==b2)||(k==i)||(k==j))
continue;
s[0].a=a1;s[0].b=b1;
s[1].a=a2;s[1].b=b2;
s[2].a=c[i].a; s[2].b=c[i].b;
s[3].a=c[j].a; s[3].b=c[j].b;
s[4].a=c[k].a;s[4].b=c[k].b;
memset(r,0,sizeof(r));
memset(aCnt,0,sizeof(aCnt));
sort(s,s+5);
for(int n=0;n<5;n++)
aCnt[s[n].a]++;
for(int n=0;n<5;n++)
{
if(aCnt[s[n].a]==4)
{
r[2]=true;
break;
}
}
int temp3=0,temp2=0;
for(int n=0;n<5;n++)
{
if(aCnt[s[n].a]==3)
{
temp3++;
}
else if(aCnt[s[n].a]==2)
temp2++;
}
temp3/=2;
temp2/=2;
if(temp3==1&&temp2==1)
r[3]=true;
if(s[0].b==s[1].b&&s[1].b==s[2].b&&s[2].b==s[3].b&&s[3].b==s[4].b)
r[4]=true;
if(s[0].a==(s[1].a-1)&& s[1].a==(s[2].a-1)&& s[2].a==(s[3].a-1)&&s[3].a==(s[4].a-1))
{
r[5]=true;
}
if(temp3==1&&temp2==0)
r[6]=true;
if(temp2==2)
r[7]=true;
if(temp3==0&&temp2==1)
r[8]=true;
if(r[4]==true&&r[5]==true)
ans[1]++;
else if(r[2]==true)
ans[2]++;
else if(r[3]==true)
ans[3]++;
else if(r[4]==true)
ans[4]++;
else if(r[5]==true)
ans[5]++;
else if(r[6]==true)
ans[6]++;
else if(r[7]==true)
ans[7]++;
else if(r[8]==true)
ans[8]++;
else
ans[9]++;
}
}
}
for(int i=1;i<10;i++)
{
if(i!=9)
cout<<ans[i]/6<<" ";
else
cout<<ans[i]/6<<endl;
}
}