程序设计思维与实践 Week6 限时大模拟 (3/4/数据班) A - 掌握魔法の东东 II

题意

从瑞神家打牌回来后,东东痛定思痛,决定苦练牌技,终成赌神!
东东有 A × B 张扑克牌。每张扑克牌有一个大小(整数,记为a,范围区间是 0 到 A - 1)和一个花色(整数,记为b,范围区间是 0 到 B - 1。
扑克牌是互异的,也就是独一无二的,也就是说没有两张牌大小和花色都相同。
“一手牌”的意思是你手里有5张不同的牌,这 5 张牌没有谁在前谁在后的顺序之分,它们可以形成一个牌型。 我们定义了 9 种牌型,如下是 9 种牌型的规则,我们用“低序号优先”来匹配牌型,即这“一手牌”从上到下满足的第一个牌型规则就是它的“牌型编号”(一个整数,属于1到9):

同花顺: 同时满足规则 5 和规则 4.
炸弹 : 5张牌其中有4张牌的大小相等.
三带二 : 5张牌其中有3张牌的大小相等,且另外2张牌的大小也相等.
同花 : 5张牌都是相同花色的.
顺子 : 5张牌的大小形如 x, x + 1, x + 2, x + 3, x + 4
三条: 5张牌其中有3张牌的大小相等.
两对: 5张牌其中有2张牌的大小相等,且另外3张牌中2张牌的大小相等.
一对: 5张牌其中有2张牌的大小相等.
要不起: 这手牌不满足上述的牌型中任意一个.
现在, 东东从A × B 张扑克牌中拿走了 2 张牌!分别是 (a1, b1) 和 (a2, b2). (其中a表示大小,b表示花色)
现在要从剩下的扑克牌中再随机拿出 3 张!组成一手牌!!
其实东东除了会打代码,他业余还是一个魔法师,现在他要预言他的未来的可能性,即他将拿到的“一手牌”的可能性,我们用一个“牌型编号(一个整数,属于1到9)”来表示这手牌的牌型,那么他的未来有 9 种可能,但每种可能的方案数不一样。
现在,东东的阿戈摩托之眼没了,你需要帮他算一算 9 种牌型中,每种牌型的方案数。
Input
第 1 行包含了整数 A 和 B (5 ≤ A ≤ 25, 1 ≤ B ≤ 4).
第 2 行包含了整数 a1, b1, a2, b2 (0 ≤ a1, a2 ≤ A - 1, 0 ≤ b1, b2 ≤ B - 1, (a1, b1) ≠ (a2, b2)).
Output
输出一行,这行有 9 个整数,每个整数代表了 9 种牌型的方案数(按牌型编号从小到大的顺序)

思路

定义一个card结构体保存大小和花色,由于输入给出了两张牌,剩下的三张牌通过三层循环选出(判断不要和之前选出的重复),按大小排序,用桶来统计一下选出的五张牌的大小出现的的次数,之后按照优先级规则填入一个bool数组,具体的判断按题目要求,只需要根据统计的次数和排好序的5张卡很容易,当满足4、5时第一个要设置为true。
由于三重循环会出现顺序重复的问题,所以结果要除以 3!才得到正确结果。

总结

题面比较复杂,看懂之后思路挺简单,但是写代码的过程中要注意细节问题

代码

#include<iostream>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;

struct card
{
	int a,b;
	card(){}
	card(int a0,int b0)
	{
		a=a0;b=b0;
	}
	bool operator <(card e)
	{
		return a<e.a;
	 } 
};

int main()
{
	int ans[10];
	bool r[10];
	int aCnt[25];
	
	memset(ans,0,sizeof(ans));
	
	card s[5];
	int A,B;
	int a1,b1,a2,b2;
	
	scanf("%d%d",&A,&B);
	scanf("%d%d%d%d",&a1,&b1,&a2,&b2);
	card* c=new card[A*B+5];
	int cnt=0;
	s[0].a=a1;s[0].b=b1;
	s[1].a=a2;s[1].b=b2;
	
	for(int a=0;a<A;a++)
	{
		
		for(int b=0;b<B;b++)
		{
	
			if((b==b1&&a==a1)||(b==b2&&a==a2))
				continue;
			c[cnt].a=a;
			c[cnt].b=b;
			cnt++;
		}
	}
	for(int i=0;i<cnt;i++)
	{
		
		if((c[i].a==a1&&c[i].b==b1)||(c[i].a==a2&&c[i].b==b2))
			continue;
		
		for(int j=0;j<cnt;j++)
		{
			if((c[j].a==a1&&c[j].b==b1)||(c[j].a==a2&&c[j].b==b2)||(j==i))
				continue;
		
			for(int k=0;k<cnt;k++)
			{
				if((c[j].a==a1&&c[j].b==b1)||(c[j].a==a2&&c[j].b==b2)||(k==i)||(k==j))
					continue;
				s[0].a=a1;s[0].b=b1;
				s[1].a=a2;s[1].b=b2;
				s[2].a=c[i].a; s[2].b=c[i].b;
				s[3].a=c[j].a; s[3].b=c[j].b;
				s[4].a=c[k].a;s[4].b=c[k].b;
				memset(r,0,sizeof(r));
				memset(aCnt,0,sizeof(aCnt));
				sort(s,s+5);
				
				for(int n=0;n<5;n++)
					aCnt[s[n].a]++;
				
				for(int n=0;n<5;n++)
				{
					if(aCnt[s[n].a]==4)
					{
						r[2]=true;
						break;
					}
					
				}
	
				int temp3=0,temp2=0;
				for(int n=0;n<5;n++)
				{
					if(aCnt[s[n].a]==3)
					{
						temp3++;
					}
					else if(aCnt[s[n].a]==2)
						temp2++;
					
				}
				temp3/=2;
				temp2/=2;
				if(temp3==1&&temp2==1)
					r[3]=true;
				
				if(s[0].b==s[1].b&&s[1].b==s[2].b&&s[2].b==s[3].b&&s[3].b==s[4].b)
					r[4]=true;
				if(s[0].a==(s[1].a-1)&& s[1].a==(s[2].a-1)&& s[2].a==(s[3].a-1)&&s[3].a==(s[4].a-1))
				{
						r[5]=true;
					
				}
				
				if(temp3==1&&temp2==0)
					r[6]=true;
				if(temp2==2)
					r[7]=true;
				if(temp3==0&&temp2==1)
					r[8]=true;
					
				if(r[4]==true&&r[5]==true)
					ans[1]++;
				else if(r[2]==true)
					ans[2]++;
				else if(r[3]==true)
					ans[3]++;
				else if(r[4]==true)
					ans[4]++;
				else if(r[5]==true)
					ans[5]++;
				else if(r[6]==true)
					ans[6]++;
				else if(r[7]==true)
					ans[7]++;
				else if(r[8]==true)
					ans[8]++;
				else
					ans[9]++;				
				
				
				 
			}
		}
	}
	for(int i=1;i<10;i++)
	{
		if(i!=9)
			cout<<ans[i]/6<<" ";
		else
			cout<<ans[i]/6<<endl;
	}
	
	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值