LSTM 的几种改进方案

本文详细介绍了LSTM的两种改进变体:Peephole connections和GRU。Peephole connections通过允许门控制器直接访问单元状态,增强了LSTM的表现。GRU则是LSTM的简化版本,结构更简洁,解决了梯度消失问题,参数数量较少,但效果接近LSTM。此外,还简要提到了用于改善LSTM预测的Beam Search策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前面我们很细致地介绍了基本 LSTM 的理论,其实学者们还提出了多种 LSTM 的变种,如 Coupled LSTM、Peephole LSTM、GRU 等等,今天就来看看其中两个比较流行的变体 Peephole connections 和 GRU,它们都可应对梯度消失问题,也都可用于构建深度神经网络,此外我们还会学习一个高效的搜索策略 Beam Search

首先来回顾一下 LSTM 的结构:

LSTM 有三个门控,还有一个长期状态 C。

数学表达为:

$ i_t = \sigma (W_i h_{t-1} + U_i x_{t} + b_i)$ $ o_t = \sigma (W_o h_{t-1} + U_o x_{t} + b_o)$ $ f_t = \sigma (W_f h_{t-1} + U_f x_{t} + b_f)$

$ \tilde{C}_t = \tanh (W_C h_{t-1} + U_C x_{t} + b_C)$ $ C_t = f_t \circ C_{t-1} + i_t \circ \tilde{C}_t $

$ h_t = o_t \ci

### 改进灰狼优化算法并将其与CNN-LSTM集成 #### 灰狼优化器(Grey Wolf Optimizer, GWO)简介 灰狼优化是一种基于群体智能的元启发式优化方法,模拟了灰狼的社会等级制度及其狩猎行为。该算法通过追踪Alpha、Beta和Delta三只最佳个体来指导种群中的其他成员向最优解靠近。 为了提高GWO的表现力以及更好地适应复杂的机器学习环境,可以考虑以下几个方面: 1. **引入自适应参数调整机制** 动态调节控制因子a和其他影响收敛速度的关键参数能够使搜索过程更加灵活高效。例如,在早期迭代阶段采用较大的步长探索广阔的空间;随着迭代次数增加逐渐减小步长以精细化局部区域内的寻优操作[^1]。 2. **融合多种变异策略增强多样性** 结合差分进化(DE)等其他演化计算技术中优秀的交叉/突变算子有助于打破早熟现象维持种群内部基因交流活跃度从而避免陷入局部极值陷阱。这可以通过周期性地应用某些特定类型的扰动实现,比如高斯噪声注入或是随机交换部分位置信息等方式来进行全局范围内的跳跃尝试新路径的可能性。 3. **利用记忆功能保存历史优秀经验** 设计长期短期两种不同类型的记忆结构用于记录过往遇到过的优良模式以便后续重复利用或借鉴参考。当面临相似的任务情境时可以直接调用之前积累下来的成功案例作为初始猜测加快求解效率减少不必要的盲目摸索时间成本开销。 4. **结合具体应用场景定制化改造** 针对目标函数特性做出针对性修改让其更贴合实际需求场景下的特点规律。对于图像识别领域而言,则可着重加强特征提取环节的设计确保输入到神经网络之前的预处理工作已经充分挖掘出了原始数据集中蕴含的有效表征属性有利于提升最终分类准确性表现水平。 #### CNN-LSTM模型概述 卷积神经网络(Convolutional Neural Network,CNN)擅长捕捉空间上的关联关系而长短时记忆(Long Short-Term Memory,LSTM)则善于处理序列型的时间维度依赖问题两者结合起来形成了一套强大的时空联合建模框架特别适合用来解决视频动作理解预测这类既涉及静态帧间联系又存在动态变化趋势的任务类型。 #### 整合方案设计思路 将经过上述一系列改进措施后的GWO应用于超参设定过程中自动挑选出最适合当前训练集状况的一组配置参数组合包括但不限于批次大小(batch size),隐藏层数量(hidden layer count), 学习率(learning rate)等等重要指标项。与此同时还可以借助于GWO本身的全局搜索能力帮助初始化权重矩阵使得整个网络架构从一开始就处于一个相对较好的起点上进而加速收敛进程缩短达到预期性能所需经历的学习轮次数量。 ```python import torch from torch import nn from sklearn.model_selection import train_test_split from greywolf_optimizer import GreyWolfOptimizer # 假设这是一个实现了改进版GWO API 的库 class CNNGWOLSTM(nn.Module): def __init__(self, gw_params=None): super(CNNGWOLSTM, self).__init__() if gw_params is None: gw_params = {'batch_size': 64, 'hidden_layers': [128], 'lr': 0.001} self.cnn = nn.Sequential( nn.Conv2d(in_channels=..., out_channels=gw_params['cnn_out_ch'], kernel_size=(...)), ... ) self.lstm = nn.LSTM(input_size=sum(gw_params['hidden_layers']), hidden_size=...) self.fc = nn.Linear(...) def forward(self, x): batch_size = x.size()[0] c_out = self.cnn(x.view(-1,...)) r_out = c_out.reshape((batch_size,-1,c_out.shape[-1])) lstm_out,(h_n,c_n)=self.lstm(r_out) fc_in=lstm_out[:,-1,:].squeeze() y=self.fc(fc_in) return y def optimize_with_gwo(data_loader, gw_model_class=CNNGWOLSTM): gwo_instance = GreyWolfOptimizer(objective_function=lambda params: evaluate(params), search_space={'batch_size':[32,64], 'hidden_layers':[[64],[128]], 'lr':[0.001,0.01]}, n_iter=...) best_solution = gwo_instance.optimize() optimized_model = gw_model_class(best_solution.x) return optimized_model X_train,X_val,y_train,y_val=train_test_split(X,y,test_size=.2,stratify=y) train_loader=torch.utils.data.DataLoader(list(zip(X_train.tolist(),y_train)),shuffle=True,batch_size=best_batch_size) val_loader=torch.utils.data.DataLoader(list(zip(X_val.tolist(),y_val))) optimized_cnn_lstm=optimize_with_gwo(train_loader) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值