LightGBM 如何调参

本文介绍了LightGBM的特性和优势,包括垂直生长的决策树策略和对大数据的高效处理。讨论了如何针对不同目标调参,并提供了与xgboost的代码比较,帮助理解两者在训练和预测上的差异。推荐在10,000+行记录的数据集上使用LightGBM以避免过拟合。" 88839567,4752549,Oracle RMAN备份:空块与数据文件大小关系,"['数据库管理', 'Oracle RMAN', '数据备份']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文结构:

  1. 什么是 LightGBM
  2. 怎么调参
  3. 和 xgboost 的代码比较

1. 什么是 LightGBM

Light GBM is a gradient boosting framework that uses tree based learning algorithm.

LightGBM 垂直地生长树,即 leaf-wise,它会选择最大 delta loss 的叶子来增长。

而以往其它基于树的算法是水平地生长,即 level-wise,

当生长相同的叶子时,Leaf-wise 比 level-wise 减少更多的损失。

高速,高效处理大数据,运行时需要更低的内存,支持 GPU

不要在少量数据上使用,会过拟合,建议 10,000+ 行记录时使用。


2. 怎么调参

下面几张表为重要参数的含义和如何应用

Control Parameters 含义 用法
max_depth 树的最大深度 当模型过拟合时,可以考虑首先降低 max_depth
min_data_in_leaf 叶子可能具有的最小记录数 默认20,过拟合时用
feature_fraction 例如 为0.8时,意味着在每次迭代中随机选择80%的参数来建树 boosting 为 random forest 时用
bagging_fraction 每次迭代时用的数据比例 用于加快训练速度和减小过拟合
early_stopping_round 如果一次验证数据的一个度量在最近的early_stopping_round 回合中没有提高,模型将停止训练 加速分析,减少过多迭代
lambda 指定正则化 0~1
min_gain_to_split 描述分裂的最小 gain 控制树的有用的分裂
max_cat_group 在 group 边界上找到分割点 当类别数量很多时,找分割点很容易过拟合时
Core Parameters 含义 用法
Task 数据的用途 选择 train 或者 predict
application 模型的用途 选择 regression: 回归时,binary: 二分类时,multiclass: 多分类时
boosting 要用的算法 gbd
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值