U-Net: Convolutional Networks for Biomedical Image Segmentation理解一

U-net:Convolutional Networks for Biomedical Image Segmentation翻译

这篇博客是简单的对U-Net: Convolutional Networks for Biomedical Image Segmentation文章的简单翻译,具体理解请参考

https://blog.csdn.net/aliyanah_/article/details/90113304

U-Net:用于生物医学图像分割的卷积网络
Abstract. There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.
摘要:深度神经网络的成功训练需要数千张带标记的训练样本这个现象是得到很大的认可的。在这篇文章中,我们提出了一个网络和一种训练策略。该策略是通过对已有的带标记的图像进行图像增强(即通过旋转,随机裁剪,缩放等增加图片的数量),从而更有效地使用已有的标记样本。该体系结构包括捕获上下文信息的收缩路径(contracting path)和实现精确定位的对称扩展路径(expanding path)。我们的实验结果表明,这种网络可以对数量比较少的图像集进行端到端地训练,并且优于ISBI电子显微镜堆叠的神经元结构分割挑战 中的最佳方法(滑动窗口卷积网络)。用同样的网络(滑动窗口卷积网络)和我们的网络 训练透射光显微镜图像(相位对比和DIC)–2015年ISBI细胞追踪挑战,我们的网络有明显更好的分类结果。 而且网络训练速度很快,在目前的GPU上,分割一张512x512图像不到一秒钟。完整的实验过程(基于Caffe)和训练好的网络可在http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.中获得。
1 Introduction
In the last two years, deep convolutional networks have outperformed the state of the art in many visual recognition tasks, e.g. [7,3]. While convolutional networks have already existed for a long time [8], their success was limited due to the size of the available training sets and the size of the considered networks. The breakthrough by Krizhevsky et al. [7] was due to supervised training of a large network with 8 layers and millions of parameters on the ImageNet dataset with 1 million training images. Since then, even larger and deeper networks have been trained [12].
在近两年,深度卷积神经网络在很多视觉识别任务上有很出色的表现,如【7,3】。尽管卷积神经网络已经存在很长时间了【8】,但是由于有限的训练数据集和可考虑网络的规模,它的成功受到了限制。Krizhevsky等人在此有突破[7],是由于将包含100万张训练图像的ImageNet数据集在8层的网络上进行监督训练学习,并且该网络有数百万个参数。从那以后,就算规模更大或者层数更深的网络也可以被训练。
The typical use of convolutional networks is on classification tasks, where the output to an image is a single class label. However, in many visual tasks, especially in biomedical image processing, the desired output should include localization, i.e., a class label is supposed to be assigned to each pixel. Moreover, thousands of training images are usually beyond reach in biomedical tasks. Hence, Ciresan et al. [1] trained a network in a sliding-window setup to predict the class label of each pixel by providing a local region (patch) around that pixel as input. First, this network can localize. Secondly, the training data in terms of patches is much larger than the number of training images. The resulting network won the EM segmentation challenge at ISBI 2012 by a large margin.
卷积网络的典型应用是分类任务,它的输出是对应一张图像的单个类别标签。然而在很多的视觉任务中,尤其是生物医学图像处理中,它所期待的输出是物体的位置等,或者每个像素所属类别的标签。而且,对于医学图像的任务,搜集到数千张的训练图像往往做不到。因此,Ciresan等人[1],训练了一种滑动窗口网络,该网络将每个像素位置附近的区域(或称局部区域,一个patch)作为输入,来预测每个像素的类别标签。首先,这个网络可以定位,其次,在训练数据方面,像素局部区域的数量远多于训练数据的数量。(我的理解是,把图像分成了很多的像素块再放到网络中去训练)。这个网络在ISBI 2012 EM分割挑战中获得了冠军。
在这里插入图片描述Figure1 U-net结构(最小的图像分辨率为32*32)每个蓝色的框表示一个多通过的特征映射,通道的数量写在框的顶部,x和y的大小在框的左下角表明,每种矢量箭头表示不同的操作。

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it is quite slow because the network must be run separately for each patch, and there is a lot

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值