接触角测量案例分享及问题解答(二)

在做接触角测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对接触角测量不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们;

如何衡量/检测接触角测量的准确性?

 

测量都是建立在某一模型的基础上,测量的准确性首先取决于采用的模型在多大程度上与实际被测量体系相符合:符合程度越高,测量的准确性也就越高。反之,即使测量的重复性再好,其数值的准确性(与真实数值的偏差)也不可能得到保证。

视频光学法测量接触角的一个默认的前提(中心轴对称性)和必要的模型假设(液滴或液面轮廓走向函数)。采用的液滴或液面轮廓走向函数的模型与真实情况的相符合性在很大程度上直接决定了最终测量得到的接触角的准确性。

当前运用于视频光学法测量接触角的整体液滴或液面轮廓模型基本上有以下几种:

1)球或圆(截面)模型:如宽高法,圆法等;

2)椭球或椭圆(截面)模型:如椭圆法;

3)Laplace-Young模型:Laplace-Young法。

其中球或圆(截面)模型是假设表面张力的作用与液滴本身的重力相比,大大超过后者,所以后者的作用力可以忽略。这其实只对体积很小(小于2µl)的水滴,而且当接触角比较小时,才大致符合。对体积较大,角度较大,或非水液体,此模型的偏差相当明显,且随着体积增大,液体的密度增大,液体的表面张力减少,接触角值增大,这一偏差也将越来越大。当接触角大于120°、采用的水滴的体积在5µl以上时,偏差可超过10°以上。另外理论计算可以证明,如果采用以球或圆(截面)模型为基础的计算方法,测量得到的接触角的数值始终不可能高过约155°,不管液滴的真实接触角值是否已超过这一数值。

椭球或椭圆(截面)模型是在部分考虑了液滴本身重力的影响下,液滴或液面轮廓被压扁,近似椭圆状。所以这一方法较圆法更接近真实状况,得到的接触角的值也较接近其真实值。但实际上,当接触角的值超过90°后,其与真实状况的偏差也明显地显示出来。

当一液滴躺在平整的固体表面上且处于力平衡时,它的形状是由液体的表面张力、液体的体积和液体与固体表面间形成的接触角而决定的。早在100多年前Laplace和Young就先后建立了描写这一力平衡的状态方程,只是这一方程没有解析解。一直到最近20年,随着计算机的发展和应用,这一描写液滴轮廓的方程才得以部分求解。部分求解这一方程的前提是:液滴和液面呈现中心轴对称性。因此对于所有符合这一前提的液滴,无论其体积、密度和接触角多大,只要其形状呈现中心轴对称性,其轮廓就可以用Laplace-Young方程得以准确描述,而且能得到求解,由此就可准确计算出其在固体表面的接触角。

影响接触角测量准确性的另一个关键因素是液滴与固体表面相接触处的基线位置的测量。基线位置对接触角值测量结果的影响随着接触角值的变大而迅速增加:接触角越大,由于基线位置测定不准确而导致的接触角测量结果的误差也越大。如果测量软件没有自动、准确确定液滴基线位置的功能,基线位置只能通过肉眼观察来确定,那么其实这样的方法根本不可能达到0.1°的测量准确性。不管采用何种计算方法。而且当接触角值在90°以上时,由于基线位置误差而引起的接触角测量误差可以高达1-5°左右。

本文所有内容文字、图片和音视频资料,版权均属科学指南针网站所有,任何媒体、网站或个人未经本网协议授权不得以链接、转贴、截图等任何方式转载。

计算机操作系统基础知识。 A-B-A-001 计算机网络基础知识。 A-B-A-002 软件编程基础知识。 A-B-A-003 软件测试基础知识 A-B-A-004 统计学概述。 A-B-A-005 系统工程概述。 A-B-A-006 物联网系统概述。 A-B-A-007 应用场景基础知识。 A-B-A-008 数字孪生基本概念 A-B-B-001 结构设计基础知识。 A-B-B-002 数字孪生模型构建与应用技术概述。为以下内容分类150.气压系统的优点之一是速度范围广, 适用于高速运动。 () 151.齿轮传动可以实现非常的传动比。 () 152.数字孪生在工业制造中主要用于替代实际的生产过程。 153.在MCD定义的仿真序列对象中,每个对象都有一个或者个参数可以通过 创建‘仿真序列’进行修改预设值。 () 154.数字孪生技术只能在制造业领域应用,其他领域无法使用。 () 155.线在线上副可以约束两个体中的一组曲线相接触并且相交,常用来模拟凸轮 机构的运动。 () 156.变频器可以通过改变电机的输出电流来实现电机的调速。 () 157.数字孪生技术的一个主要优势是可以在虚拟环境中进行设备故障模拟,从而指导维护工作。 158.压力传感器适用于测量流体中的压力。 () 159.步进电机可以实现连续转动, 无需外部控制信号。 () 160.变频器的工作原理是通过改变电机的电流来实现电机的调速。 () 161.PLC的循环指令用于创建循环结构,重复执行一段程序。 () 162.曲柄滑块机构可以实现转动运动转化为直线运动。 () 163.变压器主要应用于电力传输与分配领域。 164.数字孪生技术可以通过分析虚拟数据来实现实际设备的维护预测。 165.柱面副定义的矢量轴可以做旋转。 () 166.数字孪生技术可以通过模拟产品性能来支持市场调研和分析。 167.标准"GB5226.1-2002"规定的安全要求涵盖了机械设备和电气设备两个方面。() 168.在升压变压器中, 高压侧的匝数通常于低压侧的匝数。 169.数字孪生技术可以通过预测市场需求来指导企业的生产计划。 170.数字孪生技术可以帮助企业在生产过程中实时监测设备运行状态。 () 171.气缸是液压系统中的一种控制元件, 用于改变液体流向。 () 172.数字孪生技术可以通过虚拟现实技术实现人体操控模拟。 () 173.数字孪生技术可以帮助企业优化供应链管理, 降低生产成本。 () 174.数字孪生技术只能在工业制造领域应用, 无法用于其他领域。 () 175.加速度传感器适用于测量物体在单位时间内速度的变化。 () 176.伺服电机系统的环路带宽越, 其对快速变化信号的响应越迅速。 () 177.由于上极限尺寸一定于下极限尺寸,且偏差可正可负,因而一般情况下,上极限尺寸为正值,下极限尺寸为负值。 () 178.数字孪生技术只能用于制造业, 无法应用于其他领域。 179.机械制图中, 箭头标注法是一种常用的尺寸标注方式。 () 180.数字孪生技术可以在供应链管理中实现减少库存水平的 目标。 181.液压系统的工作原理是基于流体的压力传导。 () 182.尺寸公差通常为正值, 在个别情况下也可以为负值或零。 () 183.凡内表面皆为孔, 外表面皆为轴。 () 1184.数字孪生技术只能在制造业领域应用, 其他领域无法使用。 () 1185.职业化是职业人在现代职场应具备的基本素质和工作要求, 其核心是对职业道德和职业才能的重视。 () 186.数字孪生技术可以实时监测设备的运行状态, 从而及时 预测故障。 () 187.丝杠副是一种能够实现直线运动的机构。 () 188.距离传感器是根据传感器的检测范围设置距离, 通过刚 体检测信号。 () 189.数字孪生技术只能用于设备的故障预测, 无法用于优化 生产计划。
最新发布
03-21
<think>好的,用户的问题是关于如何对涉及数字孪生技术、机械设备、传感器应用和工业制造的陈述句进行分类。首先,我需要明确每个类别的核心内容和边界,这样才能准确分类。用户提到的四个领域虽然相关,但各有侧重,需要区分开来。 首先,数字孪生技术主要关注虚拟模型和实时数据同步,用于模拟和预测。机械设备特性可能涉及结构、材料、性能参数等。传感器应用则关于数据采集、类型及部署。工业制造应用更偏向实际生产流程中的具体应用案例。 接下来,我需要考虑每个陈述句的关键词。例如,如果句子提到“虚拟模型”或“实时数据”,可能属于数字孪生。提到“轴承寿命”或“结构设计”可能归为机械设备。传感器相关的关键词如“温度传感器”或“数据采集”自然属于传感器应用。工业制造可能涉及“生产线优化”或“质量控制”。 用户可能希望有一个清晰的分类标准,可能需要具体的例子来帮助理解。此外,他们可能希望了解分类后的用途,比如用于数据分析、技术文档整理或项目规划。是否需要考虑重叠的情况?例如,一个句子同时涉及传感器和数字孪生,可能需要跨类别或单独处理。 参考提供的引用[^1],参数图用于约束与系统属性的绑定,可能适用于分类时的结构化方法,将每个类别视为系统的一个属性,并定义它们的约束关系。这有助于系统化分类过程,确保一致性和可分析性。 总结步骤:定义类别,提取关键词,制定分类规则,处理特殊情况如重叠,提供实例。需要确保分类方法既能明确区分,又能覆盖所有相关陈述,避免遗漏。可能需要迭代调整,根据实际句子测试分类效果,优化关键词列表和规则。</think>### 分步解答: 对包含数字孪生技术、机械设备特性、传感器应用及工业制造的陈述句进行分类,可通过以下步骤实现: --- #### **1. 定义分类标签及核心内容** - **数字孪生技术**: 涉及虚拟模型构建、实时数据同步、仿真与预测等。 示例: “通过数字孪生模型模拟设备运行状态” → **数字孪生技术**[^1] “利用实时数据更新孪生模型以优化生产” → **数字孪生技术** - **机械设备特性**: 描述机械结构、材料性能、动力学参数等物理属性。 示例: “某型号轴承的极限转速为10,000 RPM” → **机械设备特性** “齿轮箱的振动频率与负载呈非线性关系” → **机械设备特性** - **传感器应用**: 涵盖传感器类型、部署位置、数据采集与传输等。 示例: “在电机外壳安装温度传感器监测过热” → **传感器应用** “通过无线加速度计采集振动信号” → **传感器应用** - **工业制造应用**: 聚焦生产流程优化、质量控制、设备维护等实际场景。 示例: “基于数据分析优化装配线节拍” → **工业制造应用** “利用机器学习预测刀具磨损周期” → **工业制造应用** --- #### **2. 关键词提取与规则匹配** - **数字孪生技术**: 关键词:虚拟模型、实时同步、仿真、预测、数字映射、孪生体 数学表达示例: $$ \text{数字孪生模型} = f(\text{物理系统}, \text{传感器数据}) $$ - **机械设备特性**: 关键词:材料强度、疲劳寿命、刚度、扭矩、转速、振动谱 数学表达示例: $$ \tau = J \cdot \alpha \quad (\text{扭矩与角加速度关系}) $$ - **传感器应用**: 关键词:温度/压力/位移传感器、采样率、信噪比、标定、数据采集 数学表达示例: $$ y(t) = k \cdot x(t) + \epsilon(t) \quad (\text{传感器输出模型}) $$ - **工业制造应用**: 关键词:生产线、良率、OEE(设备综合效率)、预防性维护、SPC(统计过程控制) 数学表达示例: $$ \text{OEE} = \text{可用率} \times \text{性能率} \times \text{良品率} $$ --- #### **3. 处理跨领域句子的策略** - **优先级规则**: 若句子涉及领域(如“通过传感器数据驱动数字孪生模型预测设备故障”),按**主要技术目的**分类: - 若强调孪生模型的构建 → **数字孪生技术** - 若强调传感器数据的作用 → **传感器应用** - **复合标签**: 对于明确关联领域的句子(如“基于振动传感器的数字孪生模型分析齿轮箱寿命”),可添加复合标签: **数字孪生技术+机械设备特性** --- #### **4. 自动化分类工具建议** - **基于规则的方法**: 使用正则表达式匹配关键词,例如: ```python if re.search(r"虚拟模型|仿真|数字映射", text): label.append("数字孪生技术") ``` - **机器学习方法**: 训练文本分类模型(如BERT)时,需标注数据集并优化特征工程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值