pytorch中CrossEntropyLoss中weight的问题
由于研究的需要,最近在做一个分类器,但类别数量相差很大。
在查看nn.CrossEntropyLoss()的官方文档时看到这么一句
感觉有救了,遂想应用到我自己的网络中,但是weight是自己初始化的。怎么初始化又有问题了。在看focal loss的时候有点印象,样本多的类别权重应该小,但是有没有一个公式啊?
在中文互联网是找了很久,没有太多的帖子,相关问题的帖子文章很少,于是就去谷歌了。
在以下两篇帖子找到了答案。
先放链接
https://discuss.pytorch.org/t/weights-in-weighted-loss-nn-crossentropyloss/69514
帖子1
https://datascience.stackexchange.com/questions/48369/what-loss-function-to-use-for-imbalanced-classes-using-pytorch
帖子