- tobit 应该test 正态性和同方差性,namely,normality and homoscedasticity.
- tobit 也是censored regression, which is different form truncated reg. the former has a full size of samples, but some observations are condensed into same point values. the latter is related to the problem of sample selection and selection bias. most importantly, self-selection is the determinant factors to the model application.
- 两部分模型在tobit中应该假定两部分相互independent, 而在heckman model中应该是先有样本选择,并在第二步影响回归结果。这个最重要的不同。
- tobit和heckman model中都是首先使用Probit来回归被解释变量(是一个0,1虚拟变量)的各影响因素系数。第二步使用不为0的样本进行ols regression。
- 还有一个重要不同是,tobit是对因变量进行censor,而heckman是对第三方分类代理变量截取。
- 再补充一下,就是tobit模型的样本都是同一性质的,比如工资影响因素,由于数据归并的原因,没有观察到的部分样本,这些观察不到的样本值归并为一个0或者数值C。故总体上来说,应该是所有样本都属于有工资的人。但是heckman两部法模型中的样本则不是具有同样性质的。由于Heckman模型中已加入第三代理变量来判断所收取的样本是否具有某一性质,以工资为例,在Heckman中的样本就是分为两种,一种是没有工资的人,另一种是有工资的人,两类人共同构成这些样本,但由于是考察工资影响因素,没有工资的部分样本要从中分析得出参与工作的概率后,再综合进行ols分析。因此,这个过程也有些像工具变量(代理分类变量)的作用。具体步骤可以参考相关算法介绍。
Tips for Tobit model and Heckman model
最新推荐文章于 2024-09-09 16:49:39 发布