一、二分查找(折半查找)
思路:二分查找说白了就是二分,取起始与终止的中间,判断是否==v,如果相等,就返回,否则如果 >v,就证明[m,y)不会有v;所以y = m;如果<v,就证明[x,m]不会有v,所以x = m;直到找到m,或者当x 不大于y时退出循环;
int bsearch(int *A, int x, int y, int v)
{
int m;
while(x < y)
{
m = x + (y-x)/2;//二分
if(A[m] == v) return m;
else if(A[m] > v) y = m;
else x = m+1;
}
return -1;
}
二、lower_bound //low = lower_bound(num,num+n,v) - num;
返回大于等于查找元素的第一个位置,要得到下标的话,需要减去A(数组起始位置)
手写实现代码:返回的是下标
int Lower_bound(int *A, int x, int y, int v)
{
int m;
while(x < y)
{
m = x + (y-x)/2;
if(A[m] >= v) y = m;
else x = m+1;
}
return x;
}
三、upper_bound //up = upper_bound(num,num+n,v) - num;
返回第一个大于查找元素的位置,如果要得到下标,需要减去数组起始位置;
代码如下(返回下标):
int upper_bound(int *A, int x, int y, int v)
{
int m;
while(x < y)
{
m = x + (y - x)/2;
if(A[m] <= v) x = m+1;
else y = m;
}
return x;
}
那么这里有一个实用的技巧,统计一个数组里k出现的次数,数组排序后,num = upper_bound(k) - lower_bound(k);