leetcode 64. Minimum Path Sum

64. Minimum Path Sum

等级: medium
标签: 动态规划

思路

使用dp[i][j]表示从grid[i][j]到grid[m][n]的最小cost

dp[i][j]=grid[i][j]grid[i][j]+dp[i+1][j]grid[i][j]+dp[i][j+1]min{grid[i][j]+dp[i+1][j],grid[i][j]+dp[i][j+1}i=mj=nj=ni<mi=mj<ni<mj<n

时间复杂度为
O(n2)

实现

class Solution {
public:
    int minPathSum(vector<vector<int> >& grid) {
      if(grid.empty()) return 0;
      if(grid[0].empty()) return 0;

      int m = grid.size(), n = grid[0].size();

      vector< vector<int> > dp(m, vector<int>(n, 0));

      for(int i = m - 1; i >= 0; i--)
        for(int j = n - 1; j >= 0; j--) {
          if(i == m - 1) {
            if(j == n - 1) dp[i][j] = grid[i][j];
            else dp[i][j] = dp[i][j + 1] + grid[i][j];
          } else {
            if(j == n - 1) dp[i][j] = dp[i + 1][j] + grid[i][j];
            else dp[i][j] = min(grid[i][j] + dp[i + 1][j], grid[i][j] + dp[i][j + 1]);
          }
        }
      return dp[0][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值