k近邻法是一种基本分类与回归方法,实际上就是基于给定的参数、决策,对特征向量空间进行划分,在预测时,让输入实例k个邻近的训练实例的类别来投票,k个点里个数最多的类作为该输入实例的类别。
直观的讲,K近邻模型已经把特征空间分好了类,比如二维坐标里四个象限,然后对新的实例点,比如(1,3),在它周围选择K个距离为d的训练点,投票发现在第一象限的最多,那么(1,3)就属于第一象限,分好了类。
基本要素:
k值、距离度量、分类决策
算法(书37):
输入:训练数据集
T={(x1,y1),(x2,y2),...,(xn,yn)}
其中yi属于实例的类别集合,xi属于实例的特征向量集合。

K近邻法是一种基于实例的分类方法,通过计算新实例与训练集中实例的距离,选取k个最近邻进行投票决定分类。算法涉及k值选择、距离度量和决策规则。kd树作为一种优化结构,加速了搜索邻近点的过程。构建kd树时,以坐标轴的中位数为切分点,形成平衡的二叉搜索树。在kd树中搜索最近邻点时,回溯并检查未搜索区域是否存在更近的点。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



