整理:统计学习-3 k近邻法

K近邻法是一种基于实例的分类方法,通过计算新实例与训练集中实例的距离,选取k个最近邻进行投票决定分类。算法涉及k值选择、距离度量和决策规则。kd树作为一种优化结构,加速了搜索邻近点的过程。构建kd树时,以坐标轴的中位数为切分点,形成平衡的二叉搜索树。在kd树中搜索最近邻点时,回溯并检查未搜索区域是否存在更近的点。
摘要由CSDN通过智能技术生成

k近邻法是一种基本分类与回归方法,实际上就是基于给定的参数、决策,对特征向量空间进行划分,在预测时,让输入实例k个邻近的训练实例的类别来投票,k个点里个数最多的类作为该输入实例的类别。

直观的讲,K近邻模型已经把特征空间分好了类,比如二维坐标里四个象限,然后对新的实例点,比如(1,3),在它周围选择K个距离为d的训练点,投票发现在第一象限的最多,那么(1,3)就属于第一象限,分好了类。


基本要素:

k值、距离度量、分类决策


算法(书37):

输入:训练数据集

            T={(x1,y1),(x2,y2),...,(xn,yn)}

其中yi属于实例的类别集合,xi属于实例的特征向量集合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>