LeetCode 63.Unique Paths II (不同路径 II)

题目描述:
 

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 的值均不超过 100。

 

示例 1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

 

 

AC C++ Solution:

解决方法还是和上一题想法一样,只是初始化第一行和第一列时有变化,并且在格点中只要有障碍就赋0;

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        if (m == 0) return 0;
        int n = obstacleGrid[0].size();
        if (n == 0) return 0;
        int dp[m][n];
        int i, j;
        dp[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
        for (i = 1; i < m; i++) {
            dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i-1][0];    //当前为障碍或者则取dp[i-1][0]的值(若之前已经出现过障碍,则dp[i-1][0]也为0)
        }
        for (j = 1; j < n; j++) {
            dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j-1];    //同上
        }
        for (i = 1; i < m; i++) {
            for (j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) {
                    dp[i][j] = 0;
                } else {
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
        return dp[m-1][n-1];
    }
};

 

简洁方案:

在单元格上左各增加一层。设置起点为1,其它位置初始化为0;

因为你只能从dp [0] [1]或dp [1] [0]到达dp [1] [1],你只能将它们中的一个设置为1,这样dp [1] [1]就可以了1,这意味着当你在obstacleGrid [0] [0]时,只有1个路径。

 

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
        int m = obstacleGrid.size() , n = obstacleGrid[0].size();
        vector<vector<int>> dp(m+1,vector<int>(n+1,0));
        dp[0][1] = 1;
        for(int i = 1 ; i <= m ; ++i)
            for(int j = 1 ; j <= n ; ++j)
                if(!obstacleGrid[i-1][j-1])
                    dp[i][j] = dp[i-1][j]+dp[i][j-1];
        return dp[m][n];
    }
};

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值