题目描述:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2
条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
AC C++ Solution:
解决方法还是和上一题想法一样,只是初始化第一行和第一列时有变化,并且在格点中只要有障碍就赋0;
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
if (m == 0) return 0;
int n = obstacleGrid[0].size();
if (n == 0) return 0;
int dp[m][n];
int i, j;
dp[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
for (i = 1; i < m; i++) {
dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i-1][0]; //当前为障碍或者则取dp[i-1][0]的值(若之前已经出现过障碍,则dp[i-1][0]也为0)
}
for (j = 1; j < n; j++) {
dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j-1]; //同上
}
for (i = 1; i < m; i++) {
for (j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
} else {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
};
简洁方案:
在单元格上左各增加一层。设置起点为1,其它位置初始化为0;
因为你只能从dp [0] [1]或dp [1] [0]到达dp [1] [1],你只能将它们中的一个设置为1,这样dp [1] [1]就可以了1,这意味着当你在obstacleGrid [0] [0]时,只有1个路径。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size() , n = obstacleGrid[0].size();
vector<vector<int>> dp(m+1,vector<int>(n+1,0));
dp[0][1] = 1;
for(int i = 1 ; i <= m ; ++i)
for(int j = 1 ; j <= n ; ++j)
if(!obstacleGrid[i-1][j-1])
dp[i][j] = dp[i-1][j]+dp[i][j-1];
return dp[m][n];
}
};