常用时序预测模型的R实现 二

本文介绍了R语言中实现时序预测模型的数据预处理方法,包括时间序列类如ts、zoo和xts的使用,以及数据切片、季节性判断、ACF和PACF函数在检测周期性中的应用。通过理解数据预处理,确保模型能够正确运行并产生可靠的预测结果。
摘要由CSDN通过智能技术生成

准备知识

这个系列偏重实践。要学飞行,第一步是了解飞行前做什么准备以及什么状态的飞机可以放心上去飞,想造飞机了再去了解发动机怎么工作气动外形有何影响。类似的,实现预测模型,第一步则是了解常用的数据预处理方法以求能让模型跑起来,学会判断模型好坏以保证预测结果是靠谱可用的。具体怎样优化模型不在这个系列里详谈。

数据预处理

在Python的世界里,Pandas就自带很方便的时间戳转换, resample, slicing之类,基本是标准化的数据处理库。在R里有所不同,常用的时间序列类有ts, zoo, xts,还有一大堆不同的时间格式。xts是zoo的subclass所以能做zoo的一切,两者基本结构都是带时间戳的矩阵,而且基本能接受任何格式的时间戳。ts仅接受时间轴上均匀分布的点,而且需要指定起点时间和周期长度,而zoo和xts能接受不均匀的分布。xts在这个系列里仅用于把不那么好预处理的数据转为ts格式,不作详细讨论。以下是ts最关键的初始化代码:

ts(1:10, frequency = 7, start = c(12, 2))

这行意思是什么呢?1:10是数据序列,frequency是指定这个数据

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值