TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse是一种结合Transformer和CNN的两分支架构,旨在在保持定位细节的同时提升全局上下文建模效率。它实现了息肉分割任务的最新技术水平,参数减少20%,推理速度达到98.7 FPS。文章还介绍了BiFusion模块,用于融合分支的多级特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在息肉分割任务上表现SOTA!性能优于SETR、PraNet和ResUNet++等,速度高达98.7 FPS!

注1:文末附【Transformer】和【医疗影像】交流群

注2:整理不易,欢迎点赞,支持分享!

TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
在这里插入图片描述

  • 作者单位:Rayicer, 佐治亚理工学院
  • 论文:https://arxiv.org/abs/2102.08005

具有深度特征表示和跳跃连接的基于U-Net的卷积神经网络极大地提高了医学图像分割的性能。

在本文中,我们研究了更具挑战性的问题,即在不损失low-level细节的定位能力的情况下提高全局上下文建模效率的问题。提出了一种新颖的两分支架构TransFuse,该架构以并行方式结合了Transformers和CNN。
在这里插入图片描述

使用TransFuse,可以以较浅的方式有效地捕获全局依赖性和low-level空间细节。

此外,提出了一种新颖的融合技术-BiFusion模块,用于融合每个分支的多级特征。

算法细节,建议去看原文:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值