在息肉分割任务上表现SOTA!性能优于SETR、PraNet和ResUNet++等,速度高达98.7 FPS!
注1:文末附【Transformer】和【医疗影像】交流群
注2:整理不易,欢迎点赞,支持分享!
TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation
- 作者单位:Rayicer, 佐治亚理工学院
- 论文:https://arxiv.org/abs/2102.08005
具有深度特征表示和跳跃连接的基于U-Net的卷积神经网络极大地提高了医学图像分割的性能。
在本文中,我们研究了更具挑战性的问题,即在不损失low-level细节的定位能力的情况下提高全局上下文建模效率的问题。提出了一种新颖的两分支架构TransFuse,该架构以并行方式结合了Transformers和CNN。
使用TransFuse,可以以较浅的方式有效地捕获全局依赖性和low-level空间细节。
此外,提出了一种新颖的融合技术-BiFusion模块,用于融合每个分支的多级特征。
算法细节,建议去看原文: