何恺明、孙剑团队斩获2023未来科学大奖,表彰ResNet!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉和Transformer】交流群

转载自:新智元 | 编辑:桃子 好困

【导读】8月16日,未来科学大奖正式揭晓!数学与计算机科学奖表彰创世研究ResNet,何恺明、孙剑、任少卿、张祥雨4人摘桂冠。

刚刚,2023未来科学大奖获奖名单重磅揭晓!

值得一提的是,今年「数学与计算机科学奖」颁给了创世研究ResNet的团队,表彰他们人工智能做出了基础性贡献。

2016年,何恺明、张祥雨、任少卿、孙剑在微软期间发表了开创工作「深度残差网络」,让训练数千层神经网络成为可能。

不仅如此,四人平均年龄只有38岁出头,其中,张祥雨是「未来科学大奖」第一个90后,也是目前最年轻的获奖人。

c6e022a3e5caa9d86204233f63a7e8ce.png

论文地址:https://arxiv.org/abs/1512.03385

至今,这篇研究引用数已经超过18万。

122dd74b320da199f7bc6af5e576bdd8.png

其中,AI大牛、旷视前首席科学家孙剑博士已于2022年6月14日突发疾病离世。这也是「未来科学大奖」开创先例,为去世的技术大神首次颁奖。

另外,柴继杰、周俭民荣获「生命科学奖」,赵忠贤、陈仙辉获得「物质科学奖」。

据介绍,这次奖项中,单项奖金100万美元(约730万人民币)。

04c5001a2b037414a37b235b944d3cc1.png

数学与计算机科学奖,ResNet摘冠

评语:表彰他们提出深度残差学习,为人工智能做出了基础性贡献。

深度神经网络推动了人工智能的革命和发展。其中,增加神经网络的深度是在许多人工智能应用中带来突破性进展的关键。获奖团队提出了深度残差学习,使神经网络能够达到前所未有的深度,获得以前难以实现的能力,促成了多个突破性的成果——包括AlphaGo,AlphaFold和ChatGPT。

获奖工作是四位获奖者在2012至2016年间于北京的微软亚洲研究院完成的。

何恺明

Kaiming He

a570a38c26cde8ecc900ad36bb277dbe.png

何恺明,清华大学学士(2007年),香港中文大学博士(2011年)。一直以来,担任Meta人工智能实验室的研究科学家。

近来,他在个人主页官宣,即将在2024年入职MIT,但仍EECS系的教师。

29aade9797beece833a48be7463d6c28.png

何恺明本人在计算机视觉和深度学习领域发表了一系列极具影响力的论文。

作为ResNet的一作,何恺明的这篇研究是2019年、2020年和2021年谷歌学术指标中,所有研究领域被引用次数最多的论文,并为现代深度学习模型中建立了一个基本组件,比如,Transformer、AlphaGo Zero、AlphaFold。

另外,他在视觉目标检测和分割领域做出许多贡献,包括Faster R-CNN、Mask R-CNN。

截至目前,他的所有研究引用次数超过46万次(截至2023年7月)。

孙剑

Jian Sun

5896b9499b71397bacac13af4bb63b42.png

孙剑,西安交通大学学士(1997年)及博士(2003年)。

作为旷视首席科学家、旷视研究院院长,孙剑博士全面负责旷视技术研发,并带领着旷视研究院发展成为全球规模最大的计算机视觉研究院。

在孙剑博士的带领下,旷视研究院研发了包括移动端高效卷积神经网络ShuffleNet、开源深度学习框架天元MegEngine、AI生产力平台Brain++等多项创新技术,引领前沿人工智能应用。

孙剑博士的主要研究方向是计算机视觉和计算摄影学,拥有超过40项专利,自2002年以来在顶级学术会议和期刊上发表学术论文100余篇,被引数为255630。并于2009和2016年两次获得CVPR计算机视觉年会的最佳论文奖。

任少卿

Shaoqing Ren

dd38f398861a65a109bd6f27ce53e6cf.png

任少卿,中国科学技术大学学士(2011年),中国科学技术大学与微软亚洲研究院博士(2016年)。

他曾任自动驾驶公司Momenta的合伙人兼研发总监。2020年6月,出任蔚来助理副总裁、自动驾驶研发首席专家。

张祥雨

Xiangyu Zhang

be640c0fce3064b7c569556da60d31ba.png

张祥雨,西安交通大学学士(2012年)和西安交通大学与微软亚洲研究院博士(2017年)。

他现任旷视研究院主任研究员、西安交通大学人工智能学院兼职教授。他年仅28岁就成为了旷视研究院基础模型组的负责人,为公司开辟基础算法新路。

物质科学奖

评语:表彰他们为发现抗病小体并阐明其结构和在抗植物病虫害中的功能做出的开创性工作。

超导体作为一种量子材料,其独特的零电阻和完全抗磁性特性,在能源、信息、医疗、交通和电力等领域带来深刻变革,有极大的应用前景。传统的超导材料达到超导状态的转变温度都很低(低于-230摄氏度)。高温超导材料的出现极大地提高了超导现象可以存在的温度范围。一方面这为超导材料的大规模应用提供了更多可能性,同时也揭示出形成超导现象的物理机制的复杂性。

赵忠贤和陈仙辉在高温超导材料的发现和发展方面做出了杰出的贡献。高温超导材料主要有两大类:铜氧化物超导体和铁基超导体。在铜氧化物方面,赵忠贤领导的团队独立发现了第一个液氮温区的超导材料。在铁基超导体方面,陈仙辉研究组首先将超导转变温度提高到麦克米兰极限之上,证明铁基超导体确实是非常规的高温超导体,而赵忠贤研究组创造并保持了在块状材料中超导转变温度的记录。在提高超导转变温度的同时,赵忠贤和陈仙辉对于高温超导的物理机制做了大量系统性的研究,在过去数十年内推动了高温超导领域的发展。

赵忠贤

Zhongxian Zhao

6f9160ddd48880125bda75e0900f85ad.png

赵忠贤,1941年出生于辽宁新民,1964年毕业于中国科学技术大学技术物理系。

陈仙辉

Xianhui Chen

4bb938d538b1bda15027bd0355cc4ca8.png

陈仙辉,1963年出生于湖南湘潭,1992年获中国科学技术大学凝聚态物理专业博士学位。

生命科学奖

评语:表彰他们为发现抗病小体并阐明其结构和在抗植物病虫害中的功能做出的开创性工作。

植物病害的爆发对社会文明产生过重大的影响。目前,全球粮食产量的 40% 可因植物害虫和病原体而损失。20世纪40年代植物抗性位点的发现表明植物具有先天免疫机制。1994 年,植物抗性基因的克隆从分子上证明了这一假设。这些抗性基因编码核苷酸结合域和富含亮氨酸的重复序列的免疫受体,构成了植物针对多种病原体和某些昆虫的主要免疫机制。然而,这些免疫受体如何启动植物的防卫反应一直是个谜。

通过19年的合作和努力,柴继杰博士和周俭民博士确立了由免疫受体激活的抗病小体的组成、结构和功能。他们发现抗病小体是由免疫受体蛋白在识别病原体效应子后形成的多组分复合体,并发现这种复合体通过形成钙离子通道引起植物免疫反应包括程序性细胞死亡,从而保护植物免受感染。这个发现将带来更好的植物病害控制方法,对全球粮食安全具有极其重要的意义。因此授予柴继杰博士和周俭民博士未来科学大奖-生命科学奖,以表彰他们对解析植物先天免疫机制做出的开创性贡献。

柴继杰

Jijie Chai

3210f64a4f45c8d035cca7efa4e9784e.png

柴继杰,1966年生于中国辽宁,1997年获得中国医学科学院北京协和医学院药物研究所分析化学博士学位。

周俭民

Jian-min Zhou

a097c370039f3f8e45ae8a0273e2987e.png

周俭民,1964年生于中国四川,1994年获得普渡大学园艺系博士学位。

参考资料:

http://www.futureprize.org/cn/nav/detail/1435.html

 
 

点击进入—>【计算机视觉和Transformer】交流群

ICCV / CVPR 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
目标检测和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!

▲扫码进星球
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看fb0dc696d4f0d6fd971b66928203901a.gif

<think>嗯,用户让我介绍一下ResNet-50的原文。首先,我需要确定用户的需求是什么。ResNet-50是一个非常经典的深度残差网络,可能用户在学习计算机视觉或者深度学习,需要了解它的核心思想或者论文内容。 接下来,我要回忆一下ResNet的原始论文。ResNet是2015年由何凯明等人提出的,获得了CVPR的最佳论文奖。论文的标题是《Deep Residual Learning for Image Recognition》。ResNet-50是其中的一个具体模型,有50层深度。关键点在于残差学习,解决深度网络中的梯度消失或爆炸问题。 用户可能对论文的结构、核心贡献、实验结果以及应用场景感兴趣。需要分解这些部分,用简洁的语言解释清楚。要注意用户可能不熟悉专业术语,需要用通俗的语言,比如解释残差块的结构,跳跃连接的作用,以及为什么这样的设计有效。 另外,用户可能想知道ResNet-50和其他变体(如ResNet-34、ResNet-101)的区别,或者它在实际中的应用,比如在图像分类比赛中的成绩。论文中的实验部分也很重要,比如在ImageNet上的结果,错误率降低的情况。 需要确认用户是否已经了解了一些背景知识,比如之前的VGG网络,或者残差学习的概念。如果用户是初学者,可能需要更基础的介绍,而如果是进阶学习者,可能需要更深入的技术细节,比如瓶颈结构(bottleneck)的设计,即1x1、3x3、1x1卷积层的组合。 还要注意论文中的关键图表,比如残差块的示意图,以及不同层数的ResNet结构表。可能用户需要这些图表来辅助理解,但因为是文字回复,需要用描述的方式来呈现。 最后,要提供论文的原文链接和相关资源,方便用户进一步阅读。可能需要检查链接是否有效,以及推荐的资源是否合适,比如PyTorch的实现或者可视化教程。 总结一下,回答的结构应该包括论文信息、核心思想、模型架构、实验结果、应用场景和延伸资源。确保每个部分都简明扼要,重点突出,帮助用户快速掌握ResNet-50的核心内容和重要性。</think>好的!以下是关于ResNet-50及其原始论文的详细介绍: --- ### 📜 **论文信息** - **标题**: 《**Deep Residual Learning for Image Recognition**》 - **会议**: *CVPR 2016* (获**最佳论文奖**) - **年份**: 2015年12月提交(2016年发表) - **作者**: 何凯明(Kaiming He)、张翔宇、任少卿、Ross Girshick、孙剑 - **机构**: **Microsoft Research Asia** - **引用量**: 截至2023年超过**15万次**(计算机视觉领域里程碑式论文) --- ### 🌟 **核心思想** ResNet提出**残差学习框架**,解决深度网络训练中的**梯度消失/爆炸**问题: 1. **残差块(Residual Block)** - 核心公式: $$H(x) = F(x) + x$$ 其中$F(x)$为残差函数,通过**跳跃连接(Shortcut Connection)**直接传递原始输入 2. **深度突破** 首次成功训练**152层**网络(ResNet-152),远超越当时的VGG-19(19层) 3. **Bottleneck设计** ResNet-50采用**1x1-3x3-1x1卷积组合**,降低计算量(如左图) ![ResNet-50的Bottleneck结构](https://miro.medium.com/v2/resize:fit:1400/1*D0F3UitQ2l5Q0Ak-tjEdJg.png) --- ### 🚀 **关键贡献** 1. **残差学习理论** - 证明深层网络可通过残差映射**更易优化** - 提出"Identity Mapping"作为网络构建单元 2. **网络结构创新** - 设计ResNet-34/50/101/152系列模型 - 对比传统Plain Network,训练误差不随深度增加而上升 3. **跨领域通用性** 方法可迁移到目标检测、语义分割等任务(如Faster R-CNN + ResNet) --- ### 📐 **ResNet-50架构详解** | 阶段 | 层类型 | 输出尺寸 | 重复次数 | 参数计算示例 | |--------|----------------------|----------|----------|---------------------------| | 初始层 | 7x7卷积 + MaxPool | 56x56 | 1 | 7x7x3x64 = 9,408 | | Stage1 | Bottleneck Block x3 | 56x56 | 3 | [1x1x64 + 3x3x64 + 1x1x256] x3 | | Stage2 | Bottleneck Block x4 | 28x28 | 4 | 下采样通过1x1卷积步长2 | | Stage3 | Bottleneck Block x6 | 14x14 | 6 | 共包含约**25.5M**参数 | | Stage4 | Bottleneck Block x3 | 7x7 | 3 | 最后接全局平均池化 + 全连接 | --- ### 📊 **实验结果(论文表3节选)** | 模型 | 层数 | Top-1误差(ImageNet) | 计算量(FLOPs) | |------------|------|-----------------------|-----------------| | VGG-19 | 19 | 28.7% | 19.6B | | ResNet-50 | 50 | **22.85%** | 3.8B | | ResNet-101 | 101 | 21.75% | 7.6B | | ResNet-152 | 152 | 21.43% | 11.3B | --- ### 🛠️ **应用场景** 1. **图像分类**(ILSVRC 2015冠军模型) 2. **特征提取**(迁移学习常用Backbone) 3. **目标检测**(Faster R-CNN, Mask R-CNN的基础网络) 4. **医学影像分析**(如X光片分类、病灶检测) --- ### 📚 **延伸资源** - **论文原文**: [arXiv:1512.03385](https://arxiv.org/abs/1512.03385) - **代码实现**: [PyTorch官方实现](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py) - **可视化解析**: [ResNet论文逐段精读](https://www.bilibili.com/video/BV1P3411y7nn) - **实用技巧**: 现代实现中常添加**SE模块**(SENet)或**注意力机制**改进原始结构 ResNet系列开启了**超深度网络**的新时代,其残差思想深刻影响了后续的DenseNet、MobileNet等模型设计,是深度学习发展史上的重要转折点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值