PyTorch2.1支持昇腾NPU!华为成为中国首个PyTorch基金会Premier会员

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉和PyTorch】交流

9f09a0e07628139c1b2aa03b8857eb76.png

2023年10月18日(北京时间),PyTorch 基金会正式宣布华为作为Premier会员加入基金会,这也是中国首个、全球第十个PyTorch基金会最高级别会员。未来,华为将进一步与其他成员公司共同协作,加速PyTorch社区发展,为全球人工智能社区带来更多灵感和创新,共建开源新生态。

97f62477b5988bdfbd6afbda2a7448df.png

PyTorch 基金会是深度学习社区在开源 PyTorch 框架和生态系统上开展合作的中立家园。PyTorch 基金会由其成员和 PyTorch 开源项目的主要贡献者提供支持。

华为长期以来一直是PyTorch生态系统的支持者和贡献者,通过推进多样性算力支持与改进,帮助更多厂商后端能够更加轻松地接入PyTorch生态,并积极致力于PyTorch优化,从而充分释放昇腾的算力。

PyTorch社区最新发布的2.1版本,已同步支持昇腾NPU,并在华为的推动下,更新了更加完善的第三方设备接入机制。基于该特性,三方AI算力设备无需对原有框架代码进行修改就能对接PyTorch框架,昇腾也提供了官方认证的Torch NPU参考实现,可以指导三方设备便捷接入。基于新版本,用户可以在昇腾NPU上直接享受原生PyTorch的开发体验,获得高效运行在昇腾算力设备上的模型和应用。

“通过加入PyTorch基金会,我们可以进一步与其他成员公司共同协作,加速PyTorch社区的发展。”华为昇腾计算业务总裁张迪煊表示,“我们相信这对华为和 PyTorch 生态系统是互惠互利的,也符合我们长期以来开放创新,协作共赢的开源理念,为全球人工智能社区带来更多灵感和创新。”

“华为在计算机视觉、自然语言处理、语音识别等领域进行了广泛的研究,并且在大模型领域也积累了成熟的研究经验。我们相信 PyTorch 基金会将从他们对我们的成员和生态系统的支持中受益匪浅。”PyTorch 基金会执行董事 Ibrahim Haddad 说道。

2023年9月,在华为全联接大会2023上,华为发布全面智能化(All Intelligence)战略,通过持续的系统性创新,深耕AI根技术,坚持“硬件开放、软件开源、使能伙伴、发展人才”,以满足各行各业多样性的AI算力需求。这与 PyTorch 基金会的使命完美契合且相互补充,未来,华为将通过持续的技术贡献,不断推动PyTorch框架优化并拓展其生态,促进全球人工智能社区蓬勃发展。

点击进入—>【计算机视觉和Transformer】交流群

ICCV / CVPR 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
计算机视觉和PyTorch交流群成立
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉或者PyTorch 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如计算机视觉或者PyTorch+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!

▲扫码进星球
 
 
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看21b787dd993553e9167033f09bc502b4.gif

<think>好的,我现在需要处理用户关于PyTorch版本与昇腾NPU驱动版本对应的问题。首先,我得回忆一下用户之前的问题是关于在昇腾NPU上使用torchvision.transforms速度变慢的情况,而这次用户想了解PyTorch和昇腾驱动的版本对应关系。这可能是因为用户遇到了兼容性问题,导致性能下降或功能异常,所以需要确认版本匹配。 接下来,我应该先整理昇腾NPU的相关信息。华为昇腾的软件栈中,CANN(Compute Architecture for Neural Networks)是关键组件,负责硬件和深度学习框架之间的桥梁。PyTorch在昇腾上的支持通常通过插件或适配层实现,比如torch_npu这样的库。因此,版本对应关系主要涉及PyTorch、CANN和torch_npu这三个部分。 我需要查阅华为昇腾的官方文档,确认各个版本之间的兼容性。比如,用户可能想知道特定版本的PyTorch需要哪个版本的CANN和驱动。例如,CANN 7.0可能支持PyTorch 1.8到1.11,而CANN 6.3则支持更早的版本。同时,torch_npu的版本也需要与PyTorch和CANN匹配,否则会出现兼容性问题。 用户可能的需求是确保他们安装的PyTorch版本与昇腾驱动完全兼容,以避免运行时错误或性能问题。他们可能在安装过程中遇到了版本不匹配的报错,或者在运行模型时发现某些功能无法使用,因此需要明确的版本对应指导。 我还需要考虑到用户的环境配置,比如操作系统、Python版本等,这些也可能影响兼容性。不过用户的问题主要集中在PyTorch和昇腾驱动上,所以应重点放在这两个部分。此外,用户可能需要知道如何检查当前安装的版本,以及如何获取正确的版本组合。 另外,用户可能对如何升级或降级软件版本有疑问,所以需要提供相关的命令或步骤,比如使用pip安装特定版本的PyTorch,或者通过华为提供的渠道获取torch_npu包。同时,提醒用户注意依赖关系,例如某些CANN版本可能需要特定的固件或驱动版本,这需要系统管理员权限才能更新。 最后,应该总结版本对应的重要性,并建议用户定期查看华为的官方文档,以获取最新的兼容性信息,因为随着软件更新,支持的版本可能会发生变化。同时,如果用户遇到问题,建议他们提供详细的版本信息以便进一步排查。</think>以下是关于PyTorch版本与华为昇腾NPU驱动(CANN)版本的对应关系的详细介绍: --- ### 一、PyTorch与昇腾NPU的兼容性核心组件 华为昇腾NPUPyTorch支持主要通过以下组件实现: 1. **CANN(Compute Architecture for Neural Networks)** 昇腾AI处理器的统一软件栈,负责硬件加速和算子优化。 2. **PyTorch插件(`torch_npu`)** 华为提供的PyTorch扩展库,将PyTorch操作映射到昇腾NPU硬件。 3. **昇腾驱动(固件)** 硬件底层的驱动程序,与CANN版本绑定。 **三者必须版本匹配**,否则会导致功能异常或性能下降。 --- ### 二、版本对应关系(截至2023年10月) 以下是常见版本对应示例(具体以[昇腾官方文档](https://ascend.huawei.com/zh/#/software/cann)为准): | PyTorch版本 | CANN版本 | `torch_npu`版本 | 备注 | |-------------|-------------|----------------|--------------------------| | 2.1.0 | CANN 7.0 | 2.1.0 | 最新版本,支持动态Shape | | 1.11.0 | CANN 6.3.RC2| 1.11.0 | 支持静态图优化 | | 1.8.1 | CANN 5.1 | 1.8.1 | 旧版本兼容 | **注意**: - **CANN版本与驱动强绑定**:例如,CANN 7.0需搭配固件驱动版本≥1.0.12。 - **操作系统限制**:部分CANN版本仅支持特定Linux发行版(如Ubuntu 18.04/20.04、CentOS 7.6+)。 --- ### 三、版本验证与安装指南 #### 1. **检查当前环境版本** - **查看CANN版本**: ```bash cat /usr/local/Ascend/ascend-toolkit/latest/acllib/include/version.json ``` - **查看PyTorch和`torch_npu`版本**: ```python import torch, torch_npu print(torch.__version__) # PyTorch版本 print(torch_npu.__version__) # torch_npu插件版本 ``` #### 2. **安装匹配版本** - **PyTorch与`torch_npu`**: ```bash # 示例:安装PyTorch 1.11.0 + torch_npu 1.11.0 pip install torch==1.11.0 pip install torch_npu==1.11.0 --extra-index-url=https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/repository/pypi/simple/ ``` - **CANN与驱动**: 需从[昇腾社区](https://ascend.huawei.com/zh/#/software)下载对应版本的驱动包,通过`npu-smi`工具安装。 --- ### 四、常见问题与解决 1. **报错`No module named 'torch_npu'`** - 原因:未安装或版本不匹配。 - 解决:通过华为源安装指定版本的`torch_npu`。 2. **NPU设备未识别** - 检查驱动状态: ```bash npu-smi info ``` - 确认`LD_LIBRARY_PATH`包含昇腾库路径: ```bash export LD_LIBRARY_PATH=/usr/local/Ascend/driver/lib64:$LD_LIBRARY_PATH ``` 3. **性能低下或算子不支持** - 升级CANN至最新版本,确保使用优化后的算子库。 - 使用`torch_npu.optimize()`启用混合精度优化: ```python import torch_npu model = torch_npu.optimize(model) # 自动优化模型计算图 ``` --- ### 五、版本升级建议 1. **稳定性优先**:生产环境建议使用官方验证的稳定版本组合(如CANN 7.0 + PyTorch 2.1.0)。 2. **关注更新日志**:华为昇腾会定期发布版本更新,修复已知问题并优化性能。 3. **测试验证**:升级前在开发环境中验证模型兼容性与性能。 --- 如需获取实时版本兼容性信息,请访问: [华为昇腾CANN版本说明](https://ascend.huawei.com/zh/#/software/cann/community)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值