点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
扫码加入CVer学术星球,可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,以及最前沿项目和应用!发论文搞科研,强烈推荐!
转载自:新智元 | 编辑:好困 润
【导读】英伟达公布国区特供版专业级显卡RTX 5880 Ada,性能大砍接近25%,价格未知。
去年年底,英伟达正式发布了「减量不减价」的中国特供版消费级旗舰显卡——RTX 4090 D。
就在刚刚,英伟达又曝光了面向专业领域的RTX 5880 Ada!
相比于旗舰级RTX 6000,定制版5880在性能方面可谓是大幅降级——CUDA核心少了23%,单精度浮点性能低了24%。
实际上,它的表现更加接近RTX 5000——两项参数分别提升了10%和6%。
那么问题来了,性能被大刀快1/4的RTX 5880,价格上会有什么变动呢?
目前英伟达还没有公布价格。不过,根据两款标准版产品的定价——RTX 6000为6800美元,RTX 5000为4000美元,可以猜测RTX 5880应该会介于这两者之间。
但考虑到RTX 4090 D的价格一分没降——依然是1599美元,因此,就算RTX 5880给到了6800美元的售价,也并不会让人感到太过意外。
芯片方面,标准版RTX 6000 Ada和RTX 5000 Ada,搭载的都是AD102——面积为609平方毫米,拥有18,432个CUDA核心。
基于此,英伟达有着充分的灵活性,来定制RTX 5880 Ada的芯片。
而考虑到CUDA核心的数量,RTX 5880 Ada采用的应该就是AD102的某个变体。
根据美国的「芯片禁令」,向中国出口的显卡总处理能力不得超过4,800 TPP。但RTX 6000 Ada的TPP达到了5,828,超出了这个限制。显然,RTX 5880 Ada的推出,将会填补这一市场空缺。
具体来说,RTX 5880 Ada配备了14,080个CUDA核心,相当于110个流式多处理器(SMs)。而完整的AD102核心则拥有18,432个CUDA核心,也就是144个SMs。
这意味着,RTX 5880比RTX 6000的CUDA核心少了23%,只比RTX 5000多了10%。
尽管英伟达在RTX 5880上减少了一部分CUDA核心,但这款显卡依旧维持了与RTX 6000相同的显存架构——48GB显存和384位接口。
因此,RTX 5880仍能提供与RTX 6000相同的960 GB/s的内存带宽。
性能方面,RTX 5880在单精度浮点处理能力上达到了69.3TFLOPS,比RTX 5000高6%,但比RTX 6000低24%。
RT核心和Tensor核心的性能差距也是类似。
根据RTX 5880的单精度浮点数据可以推断,这款显卡的加速频率可能为2,461MHz,略低于RTX 6000的2,505 MHz和RTX 5000的2,550 MHz。
功耗方面,由于CUDA核心数量的减少,RTX 5880的TBP相比RTX 6000降低了5%,但比起RTX 5000则增加了14%。
不知道黄老板这次的刀法,能否拯救这款显卡呢?
参考资料:
https://www.tomshardware.com/pc-components/gpus/nvidia-launches-another-sanctions-compliant-gpu-for-china-rtx-5880-ada-debuts-with-14080-cuda-cores-48gb-gddr6
CVPR / ICCV 2023论文和代码下载
后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集
后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
CV论文投稿交流群成立
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如论文投稿+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!
▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看