ResNet引用量破20万!新记录!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【CV技术/投稿/求职】交流群

扫描下方二维码,加入CVer学术星球可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文搞科研,强烈推荐!

e79dd58c638979ef17fe35d22c79038d.jpeg

ResNet是一篇计算机视觉(深度学习时代)领域的经典论文。李沐曾经说过,假设你在使用卷积神经网络,有一半的可能性就是在使用 ResNet 或它的变种。

Amusi 刚刚发现 ResNet 论文被引用数量突破了 20 万+!这是首个突破20万引用量的AI论文!

43b6cd7cbb024398236c27c953ca87f2.png

2016年,何恺明、张祥雨、任少卿、孙剑在微软期间发表了开创工作「深度残差网络」,让训练数千层神经网络成为可能。

《Deep Residual Learning for Image Recognition》拿下 CVPR 2016最佳论文奖,而且在去年2023未来科学大奖的「数学与计算机科学奖」也颁给了ResNet团队,以表彰他们为人工智能做出了基础性贡献。

e60c57feccb0fe5614af7f55827dd350.jpeg

深度神经网络推动了人工智能的革命和发展。其中,增加神经网络的深度是在许多人工智能应用中带来突破性进展的关键。获奖团队提出了深度残差学习,使神经网络能够达到前所未有的深度,获得以前难以实现的能力,促成了多个突破性的成果——包括AlphaGo,AlphaFold和ChatGPT。

773fcb6cf491e56bcaa1afb588bd7cc9.jpeg

论文链接:https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

残差网络是为了解决深度神经网络(DNN)隐藏层过多时的网络退化问题而提出,下面两张图是ResNet的核心,大家应该也非常熟悉!

07ef3055ffc892ceab7bb061114218be.jpeg

09293fc1604cc9ec5f6e05ec0d741741.jpeg

而比ResNet更早期一点的 AlexNet 快15万引用量,同期的 VGG 快12万引用量!另外大家可以点击了解—>:何恺明在招实习生和博士后!

快点击进入—>【CV技术/投稿/求职】交流群

计算机视觉技术交流群成立

 
 
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
### 关于 ResNet用文献资料 #### ResNet 论文及其被情况 ResNet 是一种具有里程碑意义的深度学习架构,在计算机视觉领域产生了深远影响。当 ResNet用次数超过十次时,同样来自该领域的 AlexNet 在 2012 年发表后的用量也达到了这一水平[^1]。 #### ResNet 架构详解 深入探讨 ResNet 的具体实现细节对于理解其工作原理至关重要。ResNet 入了残差块的概念来解决深层神经网络训练中的退化问题。通过构建跳跃连接(skip connections),使得每一层可以直接访问前几层的信息,从而有效地缓解了梯度消失现象并促进了更深网络的有效训练[^2]。 #### 残差学习机制解析 为了更好地解释为何 ResNet 可以显著提升性能,研究者们提出了残差学习的思想。传统方法试图让每层直接拟合所需底层映射;而残差学习则假设这些变换相对简单,并尝试使各层去适应一个“残差函数”,即目标映射减去输入特征向量的结果。这种方法不仅简化了优化过程,还提高了模型泛化能力[^3]。 #### 结构对比分析 通过对 VGG-19 和其他标准 CNNs 进行比较可以看出,ResNet 特有的分支设计使其能够保持更多的前馈信息流。特别是那些未经过任何权重矩阵转换就被传递下去的数据路径,有助于维持信号强度而不至于因层数增加而导致衰减过多。因此,即使在网络非常深的情况下,ResNet 依然能表现出良好的收敛性和准确性[^4]。 ```python import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值