GEE19:基于 Landsat 8 的常见植被指数逐年获取【去云&波段计算】

本文介绍了基于Google Earth Engine(GEE)使用Landsat 8数据计算常见的植被指数,如NDVI、EVI、RVI等,并讨论了如何处理异常值,尤其是云影导致的负值问题。文章强调了Landsat数据的免费、全球覆盖以及多波段特性在植被监测中的优势。

1. 常见的植被指数

1.1 比值植被指数(Ratio vegetation index,RVI)

  RVI值的范围:0-30+,一般绿色植被区的范围是2-8,无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。
  RVI是绿色植物的敏感参数,可以及时反映出作物 LAI 的变化。植被覆盖度影响 RVI,当植被覆盖度较高时,RVI 对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低。

1.2 归一化植被指数(Normalized Difference Vegetation Index,NDVI)

  NDVI可以消除大部分与仪器定标、太阳角、地形、云阴影和大气条件相关辐射照度变化的影响,常用于研究植被生长状态及覆盖度。
  NDVI在LAI值很高,即植被茂密时其灵敏度会降低。负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;值的范围是 -1 ~ 1,一般绿色植被区的范围是0.2 ~ 0.8。

1.3 增强植被指数(Enhanced Vegetation Index,EVI)

  EVI 加入蓝色波段

&lt;think&gt;好的,我现在需要帮助用户在Google Earth Engine(GEE)中计算Landsat 8的EVI指数。首先,我得回忆一下EVI的计算公式。根据用户提供的引用内容,EVI的公式是:EVI=(2.5*(NIR-Red))/(NIR + 6*Red - 7.5*Blue + 1),其中NIR、Red、Blue分别对应近红外、红光和蓝光波段。所以,我需要确认Landsat 8各个波段的名称,这样才能正确提取这些波段的数据。 接下来,用户提到的引用[1]和[2]是关于Landsat 7的数据集和EVI计算的,但用户现在需要的是Landsat 8的处理。因此,我需要确保使用的数据集是Landsat 8的,比如&#39;LANDSAT/LC08/C02/T1_L2&#39;,这是Landsat 8 Level 2的数据集,已经进行了大气校正,反射率数据更准确。 然后,我需要考虑如何筛选数据。用户提到了使用ee.Filter.calendarRange来筛选时间范围,这可能用于选择特定年份或季节的影像,减少量影响。同时,可能还需要应用掩膜,比如使用QA波段覆盖的区域,确保计算EVI时使用的是清晰的像元。 在代码实现方面,步骤可能包括:加载Landsat 8数据集、应用时间和区域的筛选、应用掩膜、计算EVI并将其添加到影像中,最后进行可视化或导出结果。需要注意的是,Landsat 8波段名称可能与Landsat 7不同,例如近红外波段Landsat 8中是B5,红光波段是B4,蓝光波段是B2。因此,在代码中要正确映射这些波段。 另外,EVI计算中的系数可能需要根据具体情况进行调整,比如不同的数据集可能有不同的缩放因子。例如,Landsat Level 2数据的反射率已经缩放到0-1之间,因此在计算时可能需要乘以比例因子(如0.0000275)并加上偏移量(如-0.2),但用户提供的公式中并没有提到缩放,所以需要确认数据集的元数据,确保反射率值正确。 用户可能还需要将计算后的EVI结果进行可视化,设置适的显示参数,比如最小值、最大值和调色板。此外,导出结果或进行进一步的分析,如时间序列分析或趋势分析,可能需要用到额外的GEE功能,比如图像集的映射、缩减操作等。 最后,需要验证代码的正确性,确保EVI计算的结果在理范围内(-1到1),并检查是否有常见的错误,比如波段名称错误、未正确应用掩膜导致污染等。可能还需要提供示例代码,帮助用户直接在自己的GEE环境中运行和调整。&lt;/think&gt;### Google Earth Engine中Landsat 8的EVI计算步骤 #### 1. 数据准备 选择Landsat 8 Level 2数据集`LANDSAT/LC08/C02/T1_L2`,该数据集已进行辐射校正和大气校正,反射率数据可直接用于指数计算波段对应关系如下: - 近红外(NIR): **B5** - 红光(Red): **B4** - 蓝光(Blue): **B2** #### 2. 数据筛选 使用时间过滤和区域过滤缩小数据范围: ```javascript var collection = ee.ImageCollection(&#39;LANDSAT/LC08/C02/T1_L2&#39;) .filterDate(&#39;2020-01-01&#39;, &#39;2023-12-31&#39;) .filterBounds(geometry); // geometry为感兴趣区域 ``` #### 3. 掩膜处理 利用QA波段进行掩膜: ```javascript function maskClouds(image) { var qa = image.select(&#39;QA_PIXEL&#39;); var cloudBit = 1 &lt;&lt; 3; // 覆盖标志位 var mask = qa.bitwiseAnd(cloudBit).eq(0); return image.updateMask(mask); } var filteredCollection = collection.map(maskClouds); ``` #### 4. EVI计算 通过公式计算并添加EVI波段: ```javascript function addEVI(image) { var evi = image.expression( &#39;2.5 * (NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1)&#39;, { &#39;NIR&#39;: image.select(&#39;SR_B5&#39;).multiply(0.0000275).add(-0.2), &#39;RED&#39;: image.select(&#39;SR_B4&#39;).multiply(0.0000275).add(-0.2), &#39;BLUE&#39;: image.select(&#39;SR_B2&#39;).multiply(0.0000275).add(-0.2) } ).rename(&#39;EVI&#39;); return image.addBands(evi); } var eviCollection = filteredCollection.map(addEVI); ``` #### 5. 可视化与输出 成年均EVI并可视化: ```javascript var annualEVI = eviCollection.select(&#39;EVI&#39;).mean(); Map.addLayer(annualEVI, {min: -0.2, max: 1, palette: [&#39;red&#39;, &#39;yellow&#39;, &#39;green&#39;]}, &#39;Annual EVI&#39;); ``` #### 6. 结果导出(可选) ```javascript Export.image.toDrive({ image: annualEVI, description: &#39;L8_EVI_Annual&#39;, scale: 30, region: geometry }); ``` --- ### 技术说明 1. **反射率缩放**:Landsat 8 Level 2数据的反射率存储为16位整型,需通过公式`反射率 = SR_Bx * 0.0000275 + (-0.2)`转换为实际值[^2]。 2. **QA波段处理**:QA_PIXEL波段中第4位(从0开始计数)表示覆盖,掩膜后保留清洁像元。 3. **多时相分析**:可通过`ee.ImageCollection`的时间序列方法(如线性回归)进行植被变化趋势分析[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackson的生态模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值