机器学习-概率图模型:条件随机场(CRF)【前提假设:隐层状态序列符合马尔可夫性、枚举整个隐状态序列全部可能】【MEMM--枚举整个隐状态序列全部可能-->CRF】【判别模型:条件概率】

一、概述

CRF(全称Conditional Random Fields), 条件随机场. 是给定输入序列的条件下, 求解输出序列的条件概率分布模型,在自然语言处理中得到了广泛应用。

CRF的优点:克服了HMM的输出独立性假设问题以及MEMM的标注偏置问题。

可以将 HMM 模型看作 CRF 模型的一种特殊情况,即所有能用 HMM 解决的问题,基本上也都能用 CRF 解决,并且 CRF 还能利用更多 HMM 没有的特征。

CRF 可以用前一时刻和当前时刻的标签构成的特征函数,加上对应的权重来表示 HMM 中的转移概率,可以用当前时刻的标签和当前时刻对应的词构成的特征函数,加上权重来表示 HMM 中的发射概率。

所以 HMM 能做到的,CRF 都能做到。

1、什么样的问题需要CRF模型

首先我们来看看什么样的问题解决可以用CRF模型。使用CRF模型时我们的问题一般有这两个特征:

  1. 我们的问题是基于序列的,比如时间序列,或者状态序列。
  2. 我们的问题中有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简称状态序列。

和HMM类似,在讨论CRF之前,我们来看看什么样的问题需要CRF模型。这里举一个简单的例子:

  • 场景一:
    • 假设我们有Bob一天从早到晚的一系列照片,Bob想考考我们,要我们猜这一系列的每张照片对应的活动,比如: 工作的照片,吃饭的照片,唱歌的照片等等。一个比较直观的办法就是,我们找到Bob之前的日常生活的一系列照片
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值