概率论与数理统计
第七章
7.1 点估计
估计:已知分布,提取样本,构造函数估计参数的值(
θ
^
=
θ
^
(
X
1
,
⋯
,
X
n
)
\hat{\theta}=\hat{\theta}(X_1,\cdots,X_n)
θ^=θ^(X1,⋯,Xn))
参数空间:参数的取值范围
7.1.1 矩估计法
总体思想:用样本的矩代替总体的矩
总体的矩
⟵
\longleftarrow
⟵ 样本的矩
一阶
E
X
⟵
EX\longleftarrow
EX⟵ 一阶
X
‾
=
1
n
∑
X
i
\overline{X}=\frac{1}{n}\sum X_i
X=n1∑Xi
二阶
E
X
2
⟵
EX^2\longleftarrow
EX2⟵ 二阶
A
2
=
1
n
∑
X
i
2
A_2=\frac{1}{n}\sum X_i^2
A2=n1∑Xi2
例题
【例1】
X
∼
N
(
μ
,
σ
2
)
X\sim N(\mu,\sigma^2)
X∼N(μ,σ2),
(
X
1
,
⋯
,
X
n
)
(X_1,\cdots,X_n)
(X1,⋯,Xn)是样本,用矩估计法估计
μ
,
σ
2
\mu,\sigma^2
μ,σ2
解:
总体一阶矩:
E
X
=
μ
EX=\mu
EX=μ
样本一阶矩:
X
‾
=
1
n
∑
i
=
1
n
X
i
\displaystyle\overline{X}=\frac{1}{n}\sum\limits_{i=1}^nX_i
X=n1i=1∑nXi
μ
^
=
X
‾
\hat{\mu}=\overline{X}
μ^=X
总体二阶矩:
E
X
2
=
D
X
+
(
E
X
)
2
=
σ
2
+
μ
2
EX^2=DX+(EX)^2=\sigma^2+\mu^2
EX2=DX+(EX)2=σ2+μ2x
样本二阶矩:
A
2
=
1
n
∑
i
=
1
n
X
i
2
\displaystyle A_2=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^2
A2=n1i=1∑nXi2
σ
^
2
=
A
2
−
μ
^
2
=
1
n
∑
i
=
1
n
X
i
2
−
X
‾
2
=
1
n
∑
i
=
1
n
(
X
i
−
X
‾
)
2
=
B
2
\displaystyle\hat{\sigma}^2=A_2-\hat{\mu}^2=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^2-\overline{X}^2=\frac{1}{n}\sum\limits_{i=1}^n(X_i-\overline{X})^2=B_2
σ^2=A2−μ^2=n1i=1∑nXi2−X2=n1i=1∑n(Xi−X)2=B2
【例2】
X
∼
P
(
λ
)
X\sim P(\lambda)
X∼P(λ),
(
X
1
,
⋯
,
X
n
)
(X_1,\cdots,X_n)
(X1,⋯,Xn)是样本,用矩估计法估计
解:
E
X
=
λ
EX=\lambda
EX=λ
λ
^
=
X
‾
\hat{\lambda}=\overline{X}
λ^=X
D
X
=
λ
DX=\lambda
DX=λ
λ
^
=
B
2
\hat{\lambda}=B_2
λ^=B2
【例3】
X
X
X服从
[
θ
1
,
θ
2
]
[\theta_1,\theta_2]
[θ1,θ2]上的均匀分布,
(
X
1
,
⋯
,
X
n
)
(X_1,\cdots,X_n)
(X1,⋯,Xn)是样本,用矩估计法估计
解:
E
X
=
1
2
(
θ
1
,
θ
2
)
=
X
‾
\displaystyle EX=\frac{1}{2}(\theta_1,\theta_2)=\overline{X}
EX=21(θ1,θ2)=X
E
X
2
=
D
X
+
(
E
X
)
2
=
(
θ
1
−
θ
2
)
2
12
+
(
θ
1
+
θ
2
)
2
4
=
A
2
\displaystyle EX^2=DX+(EX)^2=\frac{(\theta_1-\theta_2)^2}{12}+\frac{(\theta_1+\theta_2)^2}{4}=A_2
EX2=DX+(EX)2=12(θ1−θ2)2+4(θ1+θ2)2=A2
解上述方程得:
θ
1
^
=
X
‾
−
3
B
2
,
θ
2
^
=
X
‾
+
3
B
2
\hat{\theta_1}=\overline{X}-\sqrt{3B_2},\hat{\theta_2}=\overline{X}+\sqrt{3B_2}
θ1^=X−3B2,θ2^=X+3B2
【例4】
X
X
X满足:
X
1
2
3
P
θ
2
2
θ
(
1
−
θ
)
(
1
−
θ
)
2
\begin{array}{c|c} X & 1 & 2 & 3\\ \hline P & \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{array}
XP1θ222θ(1−θ)3(1−θ)2
取样本
{
1
,
2
,
1
}
\{1,2,1\}
{1,2,1},求矩估计
解:
E
X
=
1
×
θ
+
2
×
2
θ
(
1
−
θ
)
+
3
×
(
1
−
θ
)
2
EX=1\times\theta+2\times2\theta(1-\theta)+3\times(1-\theta)^2
EX=1×θ+2×2θ(1−θ)+3×(1−θ)2
X
‾
=
1
+
2
+
1
3
=
4
3
\displaystyle \overline{X}=\frac{1+2+1}{3}=\frac{4}{3}
X=31+2+1=34
θ
^
=
5
6
\displaystyle\hat{\theta}=\frac{5}{6}
θ^=65
矩估计:简单易行,在使用时并不需要事先知道总体的分布。但是矩估计没有充分利用总体所提供的信息,因此矩估计不一定时理想的估计,另外,矩估计也有不唯一性。矩估计应用的前提时总体的矩存在。
7.1.2 极大似然估计法
举例:
100
100
100个球,黑色
99
99
99个,白色
1
1
1个
⟹
\Longrightarrow
⟹摸到黑球的概率为
0.99
0.99
0.99,摸到白球的概率为
0.01
0.01
0.01
100
100
100个球,黑球个数
θ
=
99
或
1
\theta=99或1
θ=99或1,白球个数
=
99
或
1
=99或1
=99或1,任意摸出一个是黑球
⟹
θ
\Longrightarrow\theta
⟹θ很可能为
99
99
99
P P P大的事件比 P P P小的事件更容易发生
将使得 A A A发生的概率最大的参数值作为估计值
【解题模板】:
- 总体的概率函数(离散型)或密度函数(连续型)
- 写似然函数 L ( λ ) L(\lambda) L(λ)
- 两边取 ln \ln ln: ln L ( λ ) \ln L(\lambda) lnL(λ)
- 对 λ \lambda λ求(偏)导,令偏导数=0
例题
【例2】总体
X
∼
P
(
λ
)
X\sim P(\lambda)
X∼P(λ),
(
X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(X1,X2,⋯,Xn)为样本,求
λ
\lambda
λ的极大似然估计
解:
总体的概率函数为:
P
(
X
=
k
)
=
λ
k
k
!
e
−
λ
(
k
=
0
,
1
,
2
,
⋯
)
P(X=k)=\displaystyle\frac{\lambda^k}{k!}e^{-\lambda}(k=0,1,2,\cdots)
P(X=k)=k!λke−λ(k=0,1,2,⋯)
则
λ
\lambda
λ的似然函数为:
L
(
λ
)
=
∏
i
=
1
n
λ
x
i
x
i
!
e
−
λ
=
λ
x
1
+
x
2
+
⋯
+
x
n
∏
i
=
1
n
x
i
!
e
−
n
λ
L(\lambda)=\displaystyle\prod\limits_{i=1}^n\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}=\frac{\lambda^{x_1+x_2+\cdots+x_n}}{\prod\limits_{i=1}^nx_i!}e^{-n\lambda}
L(λ)=i=1∏nxi!λxie−λ=i=1∏nxi!λx1+x2+⋯+xne−nλ
(
x
i
x_i
xi:观测值,
λ
\lambda
λ:未知数)
两边取
ln
\ln
ln:
ln
L
(
λ
)
=
−
ln
∏
i
=
1
n
x
i
!
+
(
x
1
+
⋯
+
x
n
)
ln
λ
−
n
λ
\displaystyle\ln L(\lambda)=-\ln\prod\limits_{i=1}^nx_i!+(x_1+\cdots+x_n)\ln\lambda-n\lambda
lnL(λ)=−lni=1∏nxi!+(x1+⋯+xn)lnλ−nλ
两边对 λ \lambda λ求导: d ln L ( λ ) d λ = x 1 + ⋯ + x n λ − n \displaystyle\frac{d\ln L(\lambda)}{d\lambda}=\frac{x_1+\cdots+x_n}{\lambda}-n dλdlnL(λ)=λx1+⋯+xn−n
令 d ln L ( λ ) d λ = 0 \displaystyle\frac{d\ln L(\lambda)}{d\lambda}=0 dλdlnL(λ)=0
λ = x 1 + ⋯ + x n n = x ‾ \lambda=\displaystyle\frac{x_1+\cdots+x_n}{n}=\overline{x} λ=nx1+⋯+xn=x
【例3】总体是参数为
λ
\lambda
λ的指数分布,
(
X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(X1,X2,⋯,Xn)为样本,求
λ
\lambda
λ的极大似然估计
解:
总体的密度函数为:
f
(
x
;
λ
)
=
{
λ
e
−
λ
x
x
>
0
0
x
≤
0
f(x;\lambda)=\begin{cases} \lambda e^{-\lambda x} & x>0\\ 0 & x\leq0 \end{cases}
f(x;λ)={λe−λx0x>0x≤0
则
λ
\lambda
λ的似然函数为:
L
(
λ
)
=
∏
i
=
1
n
λ
e
−
λ
x
i
=
λ
n
e
−
λ
(
x
1
+
⋯
+
x
n
)
L(\lambda)=\displaystyle\prod\limits_{i=1}^{n}\lambda e^{-\lambda x_i}=\lambda^{n}e^{-\lambda(x_1+\cdots+x_n)}
L(λ)=i=1∏nλe−λxi=λne−λ(x1+⋯+xn)
两边取
ln
\ln
ln:
ln
L
(
λ
)
=
n
ln
λ
−
λ
(
x
1
+
⋯
+
x
n
)
\displaystyle\ln L(\lambda)=n\ln \lambda-\lambda(x_1+\cdots+x_n)
lnL(λ)=nlnλ−λ(x1+⋯+xn)
两边对 λ \lambda λ求导: d ln L ( λ ) d λ = n λ − ( x 1 + ⋯ + x n ) \displaystyle\frac{d\ln L(\lambda)}{d\lambda}=\frac{n}{\lambda}-(x_1+\cdots+x_n) dλdlnL(λ)=λn−(x1+⋯+xn)
令 d ln L ( λ ) d λ = 0 \displaystyle\frac{d\ln L(\lambda)}{d\lambda}=0 dλdlnL(λ)=0
λ = n x 1 + ⋯ + x n = 1 x ‾ \lambda=\displaystyle\frac{n}{x_1+\cdots+x_n}=\frac{1}{\overline{x}} λ=x1+⋯+xnn=x1
【例4】总体
X
∼
N
(
μ
,
σ
2
)
X\sim N(\mu,\sigma^2)
X∼N(μ,σ2),
(
X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(X1,X2,⋯,Xn)为样本,求
μ
,
σ
2
\mu,\sigma^2
μ,σ2的极大似然估计
解:
总体的密度函数为:
f
(
x
;
μ
,
σ
2
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
f(x;\mu,\sigma^2)=\displaystyle\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
f(x;μ,σ2)=2πσ1e−2σ2(x−μ)2
则
μ
,
σ
2
\mu,\sigma^2
μ,σ2的似然函数为:
L
(
μ
,
σ
2
)
=
∏
i
=
1
n
1
2
π
σ
e
−
(
x
i
−
μ
)
2
2
σ
2
=
(
1
2
π
)
n
(
1
σ
)
n
e
−
(
x
1
−
μ
)
2
+
(
x
2
−
μ
)
2
+
⋯
+
(
x
n
−
μ
)
2
2
σ
2
L(\mu,\sigma^2)=\displaystyle\prod\limits_{i=1}^{n}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}=(\frac{1}{\sqrt{2\pi}})^n(\frac{1}{\sigma})^ne^{-\frac{(x_1-\mu)^2+(x_2-\mu)^2+\cdots+(x_n-\mu)^2}{2\sigma^2}}
L(μ,σ2)=i=1∏n2πσ1e−2σ2(xi−μ)2=(2π1)n(σ1)ne−2σ2(x1−μ)2+(x2−μ)2+⋯+(xn−μ)2
两边取
ln
\ln
ln:
ln
L
(
μ
,
σ
2
)
=
n
ln
1
2
π
−
n
2
ln
σ
2
−
(
x
1
−
μ
)
2
+
(
x
2
−
μ
)
2
+
⋯
+
(
x
n
−
μ
)
2
2
σ
2
\displaystyle\ln L(\mu,\sigma^2)=n\ln\frac{1}{\sqrt{2\pi}}-\frac{n}{2}\ln\sigma^2-\frac{(x_1-\mu)^2+(x_2-\mu)^2+\cdots+(x_n-\mu)^2}{2\sigma^2}
lnL(μ,σ2)=nln2π1−2nlnσ2−2σ2(x1−μ)2+(x2−μ)2+⋯+(xn−μ)2
(
(
1
σ
)
n
=
(
σ
2
)
−
n
2
(\frac{1}{\sigma})^n=(\sigma^2)^{-\frac{n}{2}}
(σ1)n=(σ2)−2n)
两边对
μ
\mu
μ求偏导:
∂
ln
L
(
μ
,
σ
2
)
∂
μ
=
−
−
(
2
(
x
i
−
μ
)
+
⋯
+
2
(
x
i
−
μ
)
)
2
σ
2
=
x
1
+
⋯
+
x
n
−
n
μ
σ
2
\displaystyle\frac{\partial\ln L(\mu,\sigma^2)}{\partial\mu}=-\frac{-(2(x_i-\mu)+\cdots+2(x_i-\mu))}{2\sigma^2}=\frac{x_1+\cdots+x_n-n\mu}{\sigma^2}
∂μ∂lnL(μ,σ2)=−2σ2−(2(xi−μ)+⋯+2(xi−μ))=σ2x1+⋯+xn−nμ
令 ∂ ln L ( μ , σ 2 ) ∂ μ = 0 \displaystyle\frac{\partial\ln L(\mu,\sigma^2)}{\partial\mu}=0 ∂μ∂lnL(μ,σ2)=0
μ = x 1 + ⋯ + x n n = x ‾ \mu=\displaystyle\frac{x_1+\cdots+x_n}{n}=\overline{x} μ=nx1+⋯+xn=x
两边对
σ
2
\sigma^2
σ2求偏导:
∂
ln
L
(
μ
,
σ
2
)
∂
σ
2
=
−
n
2
1
σ
2
+
(
x
1
−
μ
)
2
+
(
x
2
−
μ
)
2
+
⋯
+
(
x
n
−
μ
)
2
2
σ
4
\displaystyle\frac{\partial\ln L(\mu,\sigma^2)}{\partial\sigma^2}=-\frac{n}{2}\frac{1}{\sigma^2}+\frac{(x_1-\mu)^2+(x_2-\mu)^2+\cdots+(x_n-\mu)^2}{2\sigma^4}
∂σ2∂lnL(μ,σ2)=−2nσ21+2σ4(x1−μ)2+(x2−μ)2+⋯+(xn−μ)2
令 ∂ ln L ( μ , σ 2 ) ∂ σ 2 = 0 \displaystyle\frac{\partial\ln L(\mu,\sigma^2)}{\partial\sigma^2}=0 ∂σ2∂lnL(μ,σ2)=0
σ 2 = ( x 1 − μ ) 2 + ( x 2 − μ ) 2 + ⋯ + ( x n − μ ) 2 n = B 2 \displaystyle\sigma^2=\frac{(x_1-\mu)^2+(x_2-\mu)^2+\cdots+(x_n-\mu)^2}{n}=B_2 σ2=n(x1−μ)2+(x2−μ)2+⋯+(xn−μ)2=B2
【例4】总体
X
∼
[
θ
1
,
θ
2
]
X\sim[\theta_1,\theta_2]
X∼[θ1,θ2],
(
X
1
,
⋯
,
X
2
)
(X_1,\cdots,X_2)
(X1,⋯,X2)为样本,求
θ
1
,
θ
2
\theta_1,\theta_2
θ1,θ2的极大似然估计
解:
密度函数:
f
(
x
)
=
{
1
θ
2
−
θ
1
x
∈
[
θ
1
,
θ
2
]
0
e
l
s
e
f(x)=\begin{cases} \displaystyle\frac{1}{\theta_2-\theta_1} & x\in[\theta_1,\theta_2]\\ 0 & else \end{cases}
f(x)=⎩⎨⎧θ2−θ110x∈[θ1,θ2]else
似然函数: L ( θ 1 , θ 2 ) = ∏ i = 1 n 1 θ 2 − θ 1 = 1 ( θ 2 − θ 1 ) n \displaystyle L(\theta_1,\theta_2)=\prod\limits_{i=1}^{n}\frac{1}{\theta_2-\theta_1}=\frac{1}{(\theta_2-\theta_1)^n} L(θ1,θ2)=i=1∏nθ2−θ11=(θ2−θ1)n1
L ( θ 1 , θ 2 ) L(\theta_1,\theta_2) L(θ1,θ2)取最大 ⟹ \Longrightarrow ⟹ θ 1 , θ 2 \theta_1,\theta_2 θ1,θ2尽量接近
θ
1
=
min
{
x
1
,
x
2
,
⋯
,
x
n
}
\theta_1=\min\{x_1,x_2,\cdots,x_n\}
θ1=min{x1,x2,⋯,xn}
θ
2
=
max
{
x
1
,
x
2
,
⋯
,
x
n
}
\theta_2=\max\{x_1,x_2,\cdots,x_n\}
θ2=max{x1,x2,⋯,xn}
7.2 点估计的优良性准则
【无偏性】: E ( θ ^ ) = θ E(\hat{\theta})=\theta E(θ^)=θ
- (任何分布)总体 X X X, E ( X ) = μ , D ( X ) = σ 2 E(X)=\mu,D(X)=\sigma^2 E(X)=μ,D(X)=σ2,样本 ( X 1 , ⋯ , X n ) (X_1,\cdots,X_n) (X1,⋯,Xn)
- X ‾ \overline{X} X是 μ \mu μ的无偏估计
- 样本方差 s 2 s^2 s2是 σ 2 \sigma^2 σ2的无偏估计
-
若 θ ^ \hat{\theta} θ^是 θ \theta θ的无偏估计,则 g ( θ ^ ) g(\hat{\theta}) g(θ^)不一定是 g ( θ ) g(\theta) g(θ)的无偏估计
s 2 s^2 s2是 σ 2 \sigma^2 σ2的无偏估计,但 s s s不是 σ \sigma σ的无偏估计 -
μ = E ( X ) \mu=E(X) μ=E(X),样本 ( X 1 , ⋯ , X n ) (X_1,\cdots,X_n) (X1,⋯,Xn),取 μ ^ = C 1 X 1 + ⋯ + C n X n \hat{\mu}=C_1X_1+\cdots+C_nX_n μ^=C1X1+⋯+CnXn,其中 C 1 + ⋯ + C n = 1 C_1+\cdots+C_n=1 C1+⋯+Cn=1,则 μ ^ \hat{\mu} μ^是 μ \mu μ的无偏估计
【有效性】: D ( θ ^ 1 ) ≤ D ( θ ^ 2 ) D(\hat{\theta}_1)\leq D(\hat{\theta}_2) D(θ^1)≤D(θ^2)
- 总体 X X X, E ( X ) = μ , D ( X ) = σ 2 E(X)=\mu,D(X)=\sigma^2 E(X)=μ,D(X)=σ2, μ = { X 1 E ( X 1 ) = μ D ( X 1 ) = σ 2 X ‾ E ( X ‾ ) = μ D ( X ‾ ) = σ 2 / n 更 有 效 \mu=\begin{cases} X_1 & E(X_1)=\mu & D(X_1)=\sigma^2 &\\ \overline{X} & E(\overline{X})=\mu & D(\overline{X})=\sigma^2/n & 更有效\\ \end{cases} μ={X1XE(X1)=μE(X)=μD(X1)=σ2D(X)=σ2/n更有效
- 总体 X X X, E ( X ) = μ , D ( X ) = σ 2 E(X)=\mu,D(X)=\sigma^2 E(X)=μ,D(X)=σ2, μ = { a 1 X 1 + ⋯ + a n X n D ( a 1 X 1 + ⋯ + a n X n ) = σ 2 ( a 1 2 + ⋯ + a n 2 ) X ‾ D ( X ‾ ) = σ 2 / n 更 有 效 \mu=\begin{cases} a_1X_1+\cdots+a_nX_n & D(a_1X_1+\cdots+a_nX_n)=\sigma^2(a_1^2+\cdots+a_n^2) &\\ \overline{X} & D(\overline{X})=\sigma^2/n & 更有效\\ \end{cases} μ={a1X1+⋯+anXnXD(a1X1+⋯+anXn)=σ2(a12+⋯+an2)D(X)=σ2/n更有效
【相合性(一致性)】: lim n → + ∞ P ( ∣ θ ^ − θ ∣ < ϵ ) = 1 \lim\limits_{n\to+\infin}P(|\hat{\theta}-\theta|<\epsilon)=1 n→+∞limP(∣θ^−θ∣<ϵ)=1
7.3
7.3.1 置信区间
区间估计:
P
(
θ
^
1
≤
θ
≤
θ
^
2
)
=
1
−
α
P(\hat{\theta}_1\leq\theta\leq\hat{\theta}_2)=1-\alpha
P(θ^1≤θ≤θ^2)=1−α
(
1
−
α
1-\alpha
1−α:置信度,
[
θ
^
1
,
θ
^
2
]
[\hat{\theta}_1,\hat{\theta}_2]
[θ^1,θ^2]:区间)
做题:已知置信度,求 θ ^ 1 , θ ^ 2 \hat{\theta}_1,\hat{\theta}_2 θ^1,θ^2, θ \theta θ为未知参数
置信度: [ θ ^ 1 , θ ^ 2 ] [\hat{\theta}_1,\hat{\theta}_2] [θ^1,θ^2]能套住 θ \theta θ的概率( θ \theta θ是未知的、确定的)
枢轴变量:
- 变量 I = I ( T , θ ) I=I(T,\theta) I=I(T,θ), θ \theta θ是未知的参数, T T T已知, I I I的分布 F F F已知且与 θ \theta θ无关, I I I称为枢轴变量
- 给定 1 − α 1-\alpha 1−α,确定 F F F的上 α 2 \displaystyle\frac{\alpha}{2} 2α分位数 v α 2 \displaystyle v_{\frac{\alpha}{2}} v2α,上 1 − α 2 \displaystyle1-\frac{\alpha}{2} 1−2α分位数 v 1 − α 2 \displaystyle v_{1-\frac{\alpha}{2}} v1−2α, P ( v 1 − α 2 ≤ I ( T , θ ) ≤ v α 2 ) = 1 − α P(\displaystyle v_{1-\frac{\alpha}{2}}\leq I(T,\theta)\leq v_{\frac{\alpha}{2}})=1-\alpha P(v1−2α≤I(T,θ)≤v2α)=1−α
7.3.2 一个正态总体的均值和方差的区间估计
期望的区间估计
-
σ
2
\sigma^2
σ2已知,估计
μ
\mu
μ(即
μ
\mu
μ为未知参数)
构造枢轴变量 U = n ( X ‾ − μ ) σ ∼ N ( 0 , 1 ) U=\displaystyle\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\sim N(0,1) U=σn(X−μ)∼N(0,1)
( σ , n , X ‾ \sigma,n,\overline{X} σ,n,X已知, μ \mu μ未知)
给定 1 − α 1-\alpha 1−α,令 P ( U > u α 2 ) = α 2 , Φ 0 ( u α 2 ) = 1 − α 2 \displaystyle P(U>u_{\frac{\alpha}{2}})=\frac{\alpha}{2},\Phi_0(u_{\frac{\alpha}{2}})=1-\frac{\alpha}{2} P(U>u2α)=2α,Φ0(u2α)=1−2α
P ( − u α 2 ≤ n ( X ‾ − μ ) σ ≤ u α 2 ) = 1 − α \displaystyle P(-u_{\frac{\alpha}{2}}\leq\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\leq u_{\frac{\alpha}{2}})=1-\alpha P(−u2α≤σn(X−μ)≤u2α)=1−α
P ( X ‾ − σ u α 2 n ≤ u ≤ X ‾ + σ u α 2 n ) = 1 − α \displaystyle P(\overline{X}-\frac{\sigma u_{\frac{\alpha}{2}}}{\sqrt{n}}\leq u\leq \overline{X}+\frac{\sigma u_{\frac{\alpha}{2}}}{\sqrt{n}})=1-\alpha P(X−nσu2α≤u≤X+nσu2α)=1−α
例题
【例1】5个灯泡,样本数据:1650,1700,1680,1820,1800,
X
∼
N
(
μ
,
9
)
X\sim N(\mu,9)
X∼N(μ,9),
α
=
0.05
\alpha=0.05
α=0.05
解:
n
=
5
n=5
n=5
X
‾
=
1650
+
1700
+
1680
+
1820
+
1800
5
=
1730
\displaystyle\overline{X}=\frac{1650+1700+1680+1820+1800}{5}=1730
X=51650+1700+1680+1820+1800=1730
σ
2
=
9
⇒
σ
=
3
\sigma^2=9\Rightarrow \sigma=3
σ2=9⇒σ=3
查表 u 0.975 = 1.96 u_{0.975}=1.96 u0.975=1.96
−
1.96
≤
n
(
X
‾
−
μ
)
σ
≤
1.96
\displaystyle-1.96\leq\frac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\leq1.96
−1.96≤σn(X−μ)≤1.96
−
1.96
≤
5
(
1730
−
μ
)
3
≤
1.96
\displaystyle-1.96\leq\frac{\sqrt{5}(1730-\mu)}{3}\leq1.96
−1.96≤35(1730−μ)≤1.96
1727.37
≤
μ
≤
1732.63
1727.37\leq\mu\leq1732.63
1727.37≤μ≤1732.63
-
σ
2
\sigma^2
σ2未知(不可用),估计
μ
\mu
μ
构造枢轴变量 T = n ( X ‾ − μ ) s ∼ t ( n − 1 ) \displaystyle T=\frac{\sqrt{n}(\overline{X}-\mu)}{s}\sim t(n-1) T=sn(X−μ)∼t(n−1)
( s s s为样本标准差)
给定
1
−
α
1-\alpha
1−α,上
α
2
\displaystyle\frac{\alpha}{2}
2α分位数
t
α
2
(
n
−
1
)
\displaystyle t_{\frac{\alpha}{2}}(n-1)
t2α(n−1),
P
(
−
t
α
2
(
n
−
1
)
≤
n
(
X
‾
−
μ
)
s
≤
t
α
2
(
n
−
1
)
)
=
1
−
α
P(\displaystyle -t_{\frac{\alpha}{2}}(n-1)\leq \displaystyle\frac{\sqrt{n}(\overline{X}-\mu)}{s}\leq t_{\frac{\alpha}{2}}(n-1))=1-\alpha
P(−t2α(n−1)≤sn(X−μ)≤t2α(n−1))=1−α
X ‾ − s n t α 2 ( n − 1 ) ≤ μ ≤ X ‾ + s n t α 2 ( n − 1 ) \displaystyle\overline{X}-\frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\leq\mu\leq\overline{X}+\frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1) X−nst2α(n−1)≤μ≤X+nst2α(n−1)
方差的区间估计
-
μ \mu μ已知,对 σ 2 \sigma^2 σ2区间估计
χ 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 \displaystyle\chi^2=\frac{1}{\sigma^2}\sum\limits_{i=1}^{n}(X_i-\mu)^2 χ2=σ21i=1∑n(Xi−μ)2
给定 1 − α 1-\alpha 1−α, χ 1 − α 2 2 ( n ) , χ α 2 2 ( n ) \displaystyle\chi_{1-\frac{\alpha}{2}}^{2}(n),\chi_{\frac{\alpha}{2}}^{2}(n) χ1−2α2(n),χ2α2(n)
χ 1 − α 2 2 ( n ) ≤ 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ≤ χ α 2 2 ( n ) \displaystyle \chi_{1-\frac{\alpha}{2}}^{2}(n)\leq\frac{1}{\sigma^2}\sum\limits_{i=1}^{n}(X_i-\mu)^2\leq\chi_{\frac{\alpha}{2}}^{2}(n) χ1−2α2(n)≤σ21i=1∑n(Xi−μ)2≤χ2α2(n)
∑ i = 1 n ( X i − μ ) 2 χ α 2 2 ( n ) ≤ σ 2 ≤ ∑ i = 1 n ( X i − μ ) 2 χ 1 − α 2 2 ( n ) \displaystyle\frac{\sum\limits_{i=1}^{n}(X_i-\mu)^2}{\chi_{\frac{\alpha}{2}}^{2}(n)}\leq\sigma^2\leq\frac{\sum\limits_{i=1}^{n}(X_i-\mu)^2}{\chi_{1-\frac{\alpha}{2}}^{2}(n)} χ2α2(n)i=1∑n(Xi−μ)2≤σ2≤χ1−2α2(n)i=1∑n(Xi−μ)2 -
μ \mu μ未知,估计 σ 2 \sigma^2 σ2
χ 2 = ( n − 1 ) s 2 σ 2 ∼ χ 2 ( n − 1 ) \displaystyle\chi^2=\frac{(n-1)s^2}{\sigma^2}\sim\chi^2(n-1) χ2=σ2(n−1)s2∼χ2(n−1)
给定 1 − α 1-\alpha 1−α, χ 1 − α 2 2 ( n − 1 ) , χ α 2 2 ( n − 1 ) \displaystyle\chi_{1-\frac{\alpha}{2}}^{2}(n-1),\chi_{\frac{\alpha}{2}}^{2}(n-1) χ1−2α2(n−1),χ2α2(n−1)
置信区间: [ ( n − 1 ) s 2 χ α 2 2 ( n − 1 ) , ( n − 1 ) s 2 χ 1 − α 2 2 ( n − 1 ) ] \displaystyle[\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^{2}(n-1)},\frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}] [χ2α2(n−1)(n−1)s2,χ1−2α2(n−1)(n−1)s2]