概率论与数理统计
第六章
6.1 总体与样本
总体:
- 全体
- 个体
- 有限总体/无限总体
- 总体分布
样本:
- 抽样
- 变量 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,⋯,Xn)
- 观测值 ( x 1 , x 2 , ⋯ , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,⋯,xn)
- 简单随机抽样
- 同分布
- 独立
( x 1 , ⋯ , x n ) (x_1,\cdots,x_n) (x1,⋯,xn):
F
(
x
1
,
⋯
,
x
n
)
=
F
(
x
1
)
×
⋯
×
F
(
x
n
)
F(x_1,\cdots,x_n)=F(x_1)\times\cdots\times F(x_n)
F(x1,⋯,xn)=F(x1)×⋯×F(xn)
P
(
X
1
=
x
1
,
⋯
,
X
n
=
x
n
)
=
P
(
X
1
=
x
1
)
×
⋯
×
P
(
X
n
=
x
n
)
P(X_1=x_1,\cdots,X_n=x_n)=P(X_1=x_1)\times\cdots\times P(X_n=x_n)
P(X1=x1,⋯,Xn=xn)=P(X1=x1)×⋯×P(Xn=xn)
f
(
x
1
,
⋯
,
x
n
)
=
f
(
x
1
)
×
⋯
×
f
(
x
n
)
f(x_1,\cdots,x_n)=f(x_1)\times\cdots\times f(x_n)
f(x1,⋯,xn)=f(x1)×⋯×f(xn)
例
【例1】
X
X
X:0-1分布,概率为
p
p
p,
(
X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(X1,X2,⋯,Xn)是样本,求联合概率分布
解:
P
(
X
=
x
)
=
p
x
(
1
−
p
)
1
−
x
,
x
=
0
,
1
P(X=x)=p^x(1-p)^{1-x},x=0,1
P(X=x)=px(1−p)1−x,x=0,1
P
(
X
1
=
x
1
,
X
2
=
x
2
,
⋯
,
X
n
=
x
n
)
=
P
(
X
1
=
x
1
)
⋯
P
(
X
n
=
x
n
)
=
p
x
1
(
1
−
p
)
1
−
x
1
⋯
p
x
n
(
1
−
p
)
1
−
x
n
=
p
x
1
+
⋯
+
x
n
(
1
−
p
)
n
−
(
x
1
+
⋯
+
x
n
)
P(X_1=x_1,X_2=x_2,\cdots,X_n=x_n)=P(X_1=x_1)\cdots P(X_n=x_n)=p^{x_1}(1-p)^{1-x_1}\cdots p^{x_n}(1-p)^{1-x_n}=p^{x_1+\cdots+x_n}(1-p)^{n-(x_1+\cdots+x_n)}
P(X1=x1,X2=x2,⋯,Xn=xn)=P(X1=x1)⋯P(Xn=xn)=px1(1−p)1−x1⋯pxn(1−p)1−xn=px1+⋯+xn(1−p)n−(x1+⋯+xn)
6.2.1 统计量的定义
统计量:不含任何未知参数的样本的函数
例如:
-
X
1
+
X
2
+
⋯
+
X
n
X_1+X_2+\cdots+X_n
X1+X2+⋯+Xn
X 1 2 + X 2 2 + ⋯ + X n 2 X_1^2+X_2^2+\cdots+X_n^2 X12+X22+⋯+Xn2
m a x { ∣ X 1 ∣ , ∣ X 2 ∣ , ⋯ , ∣ X n ∣ } max\{|X_1|,|X_2|,\cdots,|X_n|\} max{∣X1∣,∣X2∣,⋯,∣Xn∣}
X 1 X_1 X1
m i n { X 3 , X 4 } min\{X_3,X_4\} min{X3,X4}
X 1 + X 2 + ⋯ + X n n \displaystyle\frac{X_1+X_2+\cdots+X_n}{n} nX1+X2+⋯+Xn
是统计量 -
(
X
1
−
μ
)
2
+
⋯
+
(
X
n
−
μ
)
2
(X_1-\mu)^2+\cdots+(X_n-\mu)^2
(X1−μ)2+⋯+(Xn−μ)2
1 n σ 2 ( X 1 + ⋯ + X n ) \displaystyle\frac{1}{n\sigma^2}(X_1+\cdots+X_n) nσ21(X1+⋯+Xn)
不是统计量
6.2.2 常用统计量
设样本
(
X
1
,
X
2
,
⋯
,
X
n
)
(X_1,X_2,\cdots,X_n)
(X1,X2,⋯,Xn)来自总体
X
X
X,即有
样本均值:
X
‾
=
1
n
∑
i
=
1
n
X
i
\displaystyle\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i
X=n1i=1∑nXi
未修正的样本方差:
s
0
2
=
1
n
∑
i
=
1
n
(
X
i
−
X
‾
)
2
\displaystyle s_0^2=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2
s02=n1i=1∑n(Xi−X)2
样本方差:
s
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
‾
)
2
\displaystyle s^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2
s2=n−11i=1∑n(Xi−X)2
样本标准差:
s
=
s
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
‾
)
2
\displaystyle s=\sqrt{s^2}=\sqrt{\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2}
s=s2=n−11i=1∑n(Xi−X)2
样本
k
k
k阶原点矩:
A
k
=
1
n
∑
i
=
1
n
X
i
k
\displaystyle A_k=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^k
Ak=n1i=1∑nXik
样本
k
k
k阶中心矩:
B
k
=
1
n
∑
i
=
1
n
(
X
i
−
X
‾
)
k
\displaystyle B_k=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^k
Bk=n1i=1∑n(Xi−X)k
协方差:
S
12
=
1
2
∑
(
X
i
−
X
‾
)
(
Y
i
−
Y
‾
)
\displaystyle S_{12}=\frac{1}{2}\sum(X_i-\overline{X})(Y_i-\overline{Y})
S12=21∑(Xi−X)(Yi−Y)
相关系数:
S
12
S
1
S
2
\displaystyle\frac{S_{12}}{S_1S_2}
S1S2S12
设总体 X X X的均值为 E X = μ EX=\mu EX=μ,方差 D X = σ 2 DX=\sigma^2 DX=σ2,样本 ( X 1 , X 2 , ⋯ , X n ) (X_1,X_2,\cdots, X_n) (X1,X2,⋯,Xn)来自总体 X X X,则:
- E X ‾ = μ E\overline{X}=\mu EX=μ
- D X ‾ = 1 n σ 2 \displaystyle D\overline{X}=\frac{1}{n}\sigma^2 DX=n1σ2
- E S 2 = σ 2 ES^2=\sigma^2 ES2=σ2
6.3.1 抽样分布
χ 2 \chi^2 χ2分布
定理: X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,⋯,Xn独立,服从 N ( 0 , 1 ) N(0,1) N(0,1),则 ∑ i = 1 n x i 2 ∼ χ 2 ( n ) \displaystyle\sum\limits_{i=1}^{n}x_i^2\sim\chi^2(n) i=1∑nxi2∼χ2(n)
χ 2 ( n ) \chi^2(n) χ2(n)满足 E X = n , D X = 2 n EX=n,DX=2n EX=n,DX=2n
由中心极限定理, X ∼ χ 2 ( n ) X\sim\chi^2(n) X∼χ2(n), n n n充分大时, X − n 2 n ∼ 近 似 N ( 0 , 1 ) \displaystyle\frac{X-n}{\sqrt{2n}}\overset{近似}{\sim}N(0,1) 2nX−n∼近似N(0,1)
定理:
X
∼
χ
2
(
n
)
,
Y
∼
χ
2
(
m
)
,
X
,
Y
X\sim\chi^2(n),Y\sim\chi^2(m),X,Y
X∼χ2(n),Y∼χ2(m),X,Y独立,则
X
+
Y
∼
χ
2
(
m
+
n
)
X+Y\sim\chi^2(m+n)
X+Y∼χ2(m+n)
推论:
X
1
,
X
2
,
⋯
,
X
n
X_1,X_2,\cdots,X_n
X1,X2,⋯,Xn独立,
X
i
∼
χ
2
(
m
i
)
X_i\sim\chi^2(m_i)
Xi∼χ2(mi),则
∑
i
=
1
n
X
i
∼
χ
2
(
∑
i
=
1
n
m
i
)
\displaystyle\sum\limits_{i=1}^nX_i\sim\chi^2(\sum\limits_{i=1}^nm_i)
i=1∑nXi∼χ2(i=1∑nmi)
上 α \alpha α分位数: P ( χ 2 > χ α 2 ( n ) ) = α P(\chi^2>\chi^2_\alpha(n))=\alpha P(χ2>χα2(n))=α
例题
【例1】已知
X
∼
χ
2
(
10
)
,
P
(
X
>
a
)
=
0.025
,
P
(
X
<
b
)
=
0.05
X\sim\chi^2(10),P(X>a)=0.025,P(X<b)=0.05
X∼χ2(10),P(X>a)=0.025,P(X<b)=0.05,求
a
,
b
a,b
a,b
解:
n
=
10
n=10
n=10
- 对
P
(
X
>
a
)
=
0.025
P(X>a)=0.025
P(X>a)=0.025:
α = 0.025 \alpha=0.025 α=0.025
a = χ 0.025 2 ( 10 ) = 20.5 a=\chi^2_{0.025}(10)=20.5 a=χ0.0252(10)=20.5 - 对
P
(
X
<
b
)
=
0.05
P(X<b)=0.05
P(X<b)=0.05
P ( X < b ) = 1 − P ( X ≥ b ) = 0.05 P(X<b)=1-P(X\geq b)=0.05 P(X<b)=1−P(X≥b)=0.05
P ( X > b ) = 0.95 P(X>b)=0.95 P(X>b)=0.95
b = χ 0.95 2 ( 10 ) = 3.94 b=\chi^2_{0.95}(10)=3.94 b=χ0.952(10)=3.94
【例】
X
1
,
X
2
,
⋯
,
X
6
X_1,X_2,\cdots,X_6
X1,X2,⋯,X6独立,服从
N
(
0
,
2
2
)
N(0,2^2)
N(0,22),求
P
(
∑
i
=
1
6
X
i
2
>
6.54
)
\displaystyle P(\sum\limits_{i=1}^{6}X_i^2>6.54)
P(i=1∑6Xi2>6.54)
解:
X
i
∼
N
(
0
,
2
2
)
X_i\sim N(0,2^2)
Xi∼N(0,22)
X
i
2
∼
N
(
0
,
1
)
\displaystyle\frac{X_i}{2}\sim N(0,1)
2Xi∼N(0,1)
∑
i
=
1
6
(
X
i
2
)
2
∼
χ
2
(
6
)
\sum\limits_{i=1}^{6}(\frac{X_i}{2})^2\sim\chi^2(6)
i=1∑6(2Xi)2∼χ2(6)
P
(
∑
i
=
1
6
X
i
2
4
>
6.54
4
)
=
P
(
χ
2
(
6
)
>
1.635
)
=
0.95
\displaystyle P(\sum\limits_{i=1}^{6}\frac{X_i^2}{4}>\frac{6.54}{4})=P(\chi^2(6)>1.635)=0.95
P(i=1∑64Xi2>46.54)=P(χ2(6)>1.635)=0.95
t t t分布
X
∼
t
(
n
)
X\sim t(n)
X∼t(n)
若
n
≥
30
n\geq30
n≥30,则与正态分布区别很小
定理: X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X\sim N(0,1),Y\sim\chi^2(n) X∼N(0,1),Y∼χ2(n), X , Y X,Y X,Y独立,则 X Y / n ∼ t ( n ) \displaystyle\frac{X}{\sqrt{Y/n}}\sim t(n) Y/nX∼t(n)
上
α
\alpha
α分位数:
P
(
T
>
t
(
n
)
)
=
α
P(T>t(n))=\alpha
P(T>t(n))=α
t
1
−
α
(
n
)
=
−
t
α
(
n
)
t_{1-\alpha}(n)=-t_\alpha(n)
t1−α(n)=−tα(n)
例题
【例3】
X
∼
N
(
2
,
1
)
,
Y
1
,
Y
2
,
⋯
,
Y
n
∼
N
(
0
,
4
)
X\sim N(2,1),Y_1,Y_2,\cdots,Y_n\sim N(0,4)
X∼N(2,1),Y1,Y2,⋯,Yn∼N(0,4),彼此独立,令
T
=
4
(
X
−
2
)
∑
i
=
1
4
Y
i
2
,
P
(
∣
T
∣
>
t
0
)
=
0.01
\displaystyle T=\frac{4(X-2)}{\sqrt{\sum\limits_{i=1}^{4}Y_i^2}},P(|T|>t_0)=0.01
T=i=1∑4Yi24(X−2),P(∣T∣>t0)=0.01,求
t
0
t_0
t0
解:
X
−
2
1
∼
N
(
0
,
1
)
,
Y
i
−
0
2
∼
N
(
0
,
1
)
\frac{X-2}{1}\sim N(0,1),\frac{Y_i-0}{2}\sim N(0,1)
1X−2∼N(0,1),2Yi−0∼N(0,1)
∑
i
=
1
4
(
Y
i
2
)
2
∼
χ
2
(
4
)
\displaystyle\sum\limits_{i=1}^4(\frac{Y_i}{2})^2\sim\chi^2(4)
i=1∑4(2Yi)2∼χ2(4)
X
−
2
1
∑
i
=
1
4
(
Y
i
2
)
2
/
4
=
4
(
X
−
2
)
∑
i
=
1
4
Y
i
2
∼
t
(
4
)
\displaystyle\frac{\frac{X-2}{1}}{\sqrt{\sum\limits_{i=1}^{4}(\frac{Y_i}{2})^2/4}}=\frac{4(X-2)}{\sqrt{\sum\limits_{i=1}^{4}Y_i^2}}\sim t(4)
i=1∑4(2Yi)2/41X−2=i=1∑4Yi24(X−2)∼t(4)
P
(
∣
T
∣
>
t
0
)
=
0.01
P(|T|>t_0)=0.01
P(∣T∣>t0)=0.01
P
(
T
>
t
0
)
=
0.005
P(T>t_0)=0.005
P(T>t0)=0.005
t
0
=
4.604
t_0=4.604
t0=4.604
F F F分布
F
(
n
1
,
n
2
)
F(n_1,n_2)
F(n1,n2)
定理:
X
∼
χ
2
(
n
1
)
,
Y
∼
χ
2
(
n
2
)
X\sim\chi^2(n_1),Y\sim\chi^2(n_2)
X∼χ2(n1),Y∼χ2(n2),则
X
/
n
1
Y
/
n
2
∼
F
(
n
1
,
n
2
)
,
Y
/
n
2
X
/
n
1
∼
F
(
n
2
,
n
1
)
\displaystyle\frac{X/n_1}{Y/n_2}\sim F(n_1,n_2),\frac{Y/n_2}{X/n_1}\sim F(n_2,n_1)
Y/n2X/n1∼F(n1,n2),X/n1Y/n2∼F(n2,n1)
推论:若 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) F∼F(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \displaystyle\frac{1}{F}\sim F(n_2,n_1) F1∼F(n2,n1)
例题
【例4】
X
1
,
X
2
,
⋯
,
X
6
X_1,X_2,\cdots,X_6
X1,X2,⋯,X6独立,服从
N
(
0
,
σ
2
)
N(0,\sigma^2)
N(0,σ2),
2
(
X
1
2
+
X
2
2
)
X
3
2
+
X
4
2
+
X
5
2
+
X
6
2
\displaystyle\frac{2(X_1^2+X_2^2)}{X_3^2+X_4^2+X_5^2+X_6^2}
X32+X42+X52+X622(X12+X22)
解:
X
i
σ
∼
N
(
0
,
1
)
\displaystyle\frac{X_i}{\sigma}\sim N(0,1)
σXi∼N(0,1)
X
1
2
σ
2
+
X
2
2
σ
2
∼
χ
2
(
2
)
,
X
3
2
σ
2
+
⋯
+
X
6
2
σ
2
∼
χ
2
(
4
)
\displaystyle\frac{X_1^2}{\sigma^2}+\frac{X_2^2}{\sigma^2}\sim\chi^2(2),\frac{X_3^2}{\sigma^2}+\cdots+\frac{X_6^2}{\sigma^2}\sim\chi^2(4)
σ2X12+σ2X22∼χ2(2),σ2X32+⋯+σ2X62∼χ2(4)
( X 1 2 σ 2 + X 2 2 σ 2 ) / 2 ( X 3 2 σ 2 + ⋯ + X 6 2 σ 2 ) / 4 = 2 ( X 1 2 + X 2 2 ) X 3 2 + X 4 2 + X 5 2 + X 6 2 ∼ F ( 2 , 4 ) \displaystyle\frac{\displaystyle(\frac{X_1^2}{\sigma^2}+\frac{X_2^2}{\sigma^2})/2}{\displaystyle(\frac{X_3^2}{\sigma^2}+\cdots+\frac{X_6^2}{\sigma^2})/4}=\frac{2(X_1^2+X_2^2)}{X_3^2+X_4^2+X_5^2+X_6^2}\sim F(2,4) (σ2X32+⋯+σ2X62)/4(σ2X12+σ2X22)/2=X32+X42+X52+X622(X12+X22)∼F(2,4)
上 α \alpha α分位数: P ( F > F α ( n 1 , n 2 ) ) = α P(F>F_\alpha(n_1,n_2))=\alpha P(F>Fα(n1,n2))=α
F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2)=\displaystyle\frac{1}{F_\alpha(n_2,n_1)} F1−α(n1,n2)=Fα(n2,n1)1
例题
【例5】
F
∼
F
(
10
,
15
)
F\sim F(10,15)
F∼F(10,15),求
λ
1
,
λ
2
\lambda_1,\lambda_2
λ1,λ2,使得
P
(
F
>
λ
1
)
=
0.01
,
P
(
F
≤
λ
2
)
=
0.01
P(F>\lambda_1)=0.01,P(F\leq\lambda_2)=0.01
P(F>λ1)=0.01,P(F≤λ2)=0.01
解:
- λ 1 = F 0.01 ( 10 , 15 ) = 3.8 \lambda_1=F_{0.01}(10,15)=3.8 λ1=F0.01(10,15)=3.8
-
P
(
F
≤
λ
2
)
=
P
(
1
F
≥
1
λ
2
)
=
0.01
\displaystyle P(F\leq\lambda_2)=P(\frac{1}{F}\geq\frac{1}{\lambda_2})=0.01
P(F≤λ2)=P(F1≥λ21)=0.01
1 F ∼ F ( 15 , 10 ) \displaystyle\frac{1}{F}\sim F(15,10) F1∼F(15,10)
λ 2 = 0.293 \lambda_2=0.293 λ2=0.293
6.3.2 正态总体下的抽样分布
(总体是正态分布,抽样本,构造统计量的分布?)
定理(一个正态总体):
X
∼
N
(
μ
,
σ
2
)
X\sim N(\mu,\sigma^2)
X∼N(μ,σ2),
{
X
1
,
X
2
,
⋯
,
X
n
}
\{X_1,X_2,\cdots,X_n\}
{X1,X2,⋯,Xn}为样本,
X
‾
=
1
n
∑
i
=
1
n
x
i
\displaystyle\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}x_i
X=n1i=1∑nxi,
s
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
‾
)
2
s^2=\frac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2
s2=n−11i=1∑n(Xi−X)2,则:
-
X
‾
∼
N
(
μ
,
σ
2
n
)
\displaystyle\overline{X}\sim N(\mu,\frac{\sigma^2}{n})
X∼N(μ,nσ2)
X ‾ − μ σ n ∼ N ( 0 , 1 ) \displaystyle\frac{\overline{X}-\mu}{\sigma}\sqrt{n}\sim N(0,1) σX−μn∼N(0,1) - ( n − 1 ) s 2 σ 2 = 1 σ 2 ∑ i = 0 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) \displaystyle\frac{(n-1)s^2}{\sigma^2}=\frac{1}{\sigma^2}\sum\limits_{i=0}^{n}(X_i-\overline{X})^2\sim\chi^2(n-1) σ2(n−1)s2=σ21i=0∑n(Xi−X)2∼χ2(n−1)
- X ‾ \overline{X} X与 X X X相互独立
- 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \displaystyle\frac{1}{\sigma^2}\sum\limits_{i=1}^n(X_i-\mu)^2\sim\chi^2(n) σ21i=1∑n(Xi−μ)2∼χ2(n)
- X ‾ − μ s n ∼ t ( n − 1 ) \displaystyle\frac{\overline{X}-\mu}{s}\sqrt{n}\sim t(n-1) sX−μn∼t(n−1)
定理(两个正态总体):
X
∼
N
(
μ
1
,
σ
1
2
)
,
Y
∼
N
(
μ
2
,
σ
2
2
)
X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2)
X∼N(μ1,σ12),Y∼N(μ2,σ22),
{
X
1
,
X
2
,
⋯
,
X
n
1
}
,
{
Y
1
,
Y
2
,
⋯
,
Y
n
2
}
\{X_1,X_2,\cdots,X_{n_1}\},\{Y_1,Y_2,\cdots,Y_{n_2}\}
{X1,X2,⋯,Xn1},{Y1,Y2,⋯,Yn2}为样本,
X
‾
=
1
n
1
∑
i
=
1
n
1
x
i
,
Y
‾
=
1
n
2
∑
i
=
1
n
2
y
i
\displaystyle\overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}x_i,\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}y_i
X=n11i=1∑n1xi,Y=n21i=1∑n2yi,
s
1
2
=
1
n
1
−
1
∑
i
=
1
n
1
(
X
i
−
X
‾
)
2
,
s
2
2
=
1
n
2
−
1
∑
i
=
1
n
2
(
Y
i
−
Y
‾
)
2
s_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2,s_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(Y_i-\overline{Y})^2
s12=n1−11i=1∑n1(Xi−X)2,s22=n2−11i=1∑n2(Yi−Y)2,则:
- ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) \displaystyle\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}\sim N(0,1) n1σ12+n2σ22(X−Y)−(μ1−μ2)∼N(0,1)
- s 1 2 / σ 1 2 s 2 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \displaystyle\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}\sim F(n_1-1,n_2-1) s22/σ22s12/σ12∼F(n1−1,n2−1)
- σ 1 2 = σ 2 2 = σ \sigma_1^2=\sigma_2^2=\sigma σ12=σ22=σ时, T = ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \displaystyle T=\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\displaystyle\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) T=n1+n2−2(n1−1)s12+(n2−1)s22n11+n21(X−Y)−(μ1−μ2)∼t(n1+n2−2)
例题
【例1】
X
∼
N
(
μ
,
σ
2
)
X\sim N(\mu,\sigma^2)
X∼N(μ,σ2),
X
‾
\overline{X}
X和
s
2
s^2
s2分别是样本均值和样本方差,样本容量为16,求
k
k
k使得
P
(
X
‾
>
μ
+
k
s
)
=
0.95
P(\overline{X}>\mu+ks)=0.95
P(X>μ+ks)=0.95
解:
X
‾
−
μ
s
n
=
4
(
X
‾
−
μ
)
s
∼
t
(
16
−
1
)
\displaystyle\frac{\overline{X}-\mu}{s}\sqrt{n}=\frac{4(\overline{X}-\mu)}{s}\sim t(16-1)
sX−μn=s4(X−μ)∼t(16−1)
P
(
X
‾
>
μ
+
k
s
)
=
P
(
4
(
X
‾
−
μ
)
s
>
4
k
s
s
)
=
P
(
4
(
X
‾
−
μ
)
s
>
4
k
)
=
0.95
\displaystyle P(\overline{X}>\mu+ks)=P(\frac{4(\overline{X}-\mu)}{s}>\frac{4ks}{s})=P(\frac{4(\overline{X}-\mu)}{s}>4k)=0.95
P(X>μ+ks)=P(s4(X−μ)>s4ks)=P(s4(X−μ)>4k)=0.95
4
k
=
−
1.753
4k=-1.753
4k=−1.753
k
=
−
0.438
k=-0.438
k=−0.438
【例2】
X
∼
N
(
μ
,
σ
2
)
X\sim N(\mu,\sigma^2)
X∼N(μ,σ2),
X
1
,
⋯
,
X
n
+
1
X_1,\cdots,X_{n+1}
X1,⋯,Xn+1为样本,
X
‾
\overline{X}
X和
s
2
s^2
s2分别是样本均值和样本方差,求
X
n
+
1
−
X
‾
s
n
n
n
+
1
\displaystyle\frac{X_{n+1}-\overline{X}}{s_n}\sqrt{\frac{n}{n+1}}
snXn+1−Xn+1n的分布
解:
X
‾
∼
N
(
μ
,
σ
2
)
,
X
n
+
1
∼
N
(
μ
,
σ
2
)
\overline{X}\sim N(\mu,\sigma^2),X_{n+1}\sim N(\mu,\sigma^2)
X∼N(μ,σ2),Xn+1∼N(μ,σ2)
X
n
+
1
−
X
‾
∼
N
(
0
,
(
1
+
1
n
)
σ
2
)
X_{n+1}-\overline{X}\sim N(0,(1+\frac{1}{n})\sigma^2)
Xn+1−X∼N(0,(1+n1)σ2)
U
=
X
n
+
1
−
X
‾
−
0
(
1
+
1
n
)
σ
2
=
X
n
+
1
−
X
‾
σ
n
+
1
n
∼
N
(
0
,
1
)
\displaystyle U=\frac{X_{n+1}-\overline{X}-0}{\sqrt{(1+\frac{1}{n})\sigma^2}}=\frac{X_{n+1}-\overline{X}}{\sigma\sqrt{\frac{n+1}{n}}}\sim N(0,1)
U=(1+n1)σ2Xn+1−X−0=σnn+1Xn+1−X∼N(0,1)
(
n
−
1
)
s
n
2
σ
2
∼
χ
2
(
n
−
1
)
\displaystyle\frac{(n-1)s_n^2}{\sigma^2}\sim\chi^2(n-1)
σ2(n−1)sn2∼χ2(n−1)
X n + 1 − X ‾ σ n + 1 n ( n − 1 ) s n 2 σ 2 / ( n − 1 ) ∼ t ( n − 1 ) \displaystyle\frac{\frac{X_{n+1}-\overline{X}}{\sigma\sqrt{\frac{n+1}{n}}}}{\sqrt{\frac{(n-1)s_n^2}{\sigma^2}/(n-1)}}\sim t(n-1) σ2(n−1)sn2/(n−1)σnn+1Xn+1−X∼t(n−1)