宋浩概率论与数理统计-第六章-笔记

第六章

6.1 总体与样本

总体:

  • 全体
  • 个体
  • 有限总体/无限总体
  • 总体分布

样本:

  • 抽样
  • 变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)
  • 观测值 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)
  • 简单随机抽样
    1. 同分布
    2. 独立

( x 1 , ⋯   , x n ) (x_1,\cdots,x_n) (x1,,xn)

F ( x 1 , ⋯   , x n ) = F ( x 1 ) × ⋯ × F ( x n ) F(x_1,\cdots,x_n)=F(x_1)\times\cdots\times F(x_n) F(x1,,xn)=F(x1)××F(xn)
P ( X 1 = x 1 , ⋯   , X n = x n ) = P ( X 1 = x 1 ) × ⋯ × P ( X n = x n ) P(X_1=x_1,\cdots,X_n=x_n)=P(X_1=x_1)\times\cdots\times P(X_n=x_n) P(X1=x1,,Xn=xn)=P(X1=x1)××P(Xn=xn)
f ( x 1 , ⋯   , x n ) = f ( x 1 ) × ⋯ × f ( x n ) f(x_1,\cdots,x_n)=f(x_1)\times\cdots\times f(x_n) f(x1,,xn)=f(x1)××f(xn)


【例1】 X X X:0-1分布,概率为 p p p ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)是样本,求联合概率分布
解:
P ( X = x ) = p x ( 1 − p ) 1 − x , x = 0 , 1 P(X=x)=p^x(1-p)^{1-x},x=0,1 P(X=x)=px(1p)1x,x=0,1
P ( X 1 = x 1 , X 2 = x 2 , ⋯   , X n = x n ) = P ( X 1 = x 1 ) ⋯ P ( X n = x n ) = p x 1 ( 1 − p ) 1 − x 1 ⋯ p x n ( 1 − p ) 1 − x n = p x 1 + ⋯ + x n ( 1 − p ) n − ( x 1 + ⋯ + x n ) P(X_1=x_1,X_2=x_2,\cdots,X_n=x_n)=P(X_1=x_1)\cdots P(X_n=x_n)=p^{x_1}(1-p)^{1-x_1}\cdots p^{x_n}(1-p)^{1-x_n}=p^{x_1+\cdots+x_n}(1-p)^{n-(x_1+\cdots+x_n)} P(X1=x1,X2=x2,,Xn=xn)=P(X1=x1)P(Xn=xn)=px1(1p)1x1pxn(1p)1xn=px1++xn(1p)n(x1++xn)

6.2.1 统计量的定义

统计量:不含任何未知参数的样本的函数

例如:

  • X 1 + X 2 + ⋯ + X n X_1+X_2+\cdots+X_n X1+X2++Xn
    X 1 2 + X 2 2 + ⋯ + X n 2 X_1^2+X_2^2+\cdots+X_n^2 X12+X22++Xn2
    m a x { ∣ X 1 ∣ , ∣ X 2 ∣ , ⋯   , ∣ X n ∣ } max\{|X_1|,|X_2|,\cdots,|X_n|\} max{X1,X2,,Xn}
    X 1 X_1 X1
    m i n { X 3 , X 4 } min\{X_3,X_4\} min{X3,X4}
    X 1 + X 2 + ⋯ + X n n \displaystyle\frac{X_1+X_2+\cdots+X_n}{n} nX1+X2++Xn
    是统计量
  • ( X 1 − μ ) 2 + ⋯ + ( X n − μ ) 2 (X_1-\mu)^2+\cdots+(X_n-\mu)^2 (X1μ)2++(Xnμ)2
    1 n σ 2 ( X 1 + ⋯ + X n ) \displaystyle\frac{1}{n\sigma^2}(X_1+\cdots+X_n) nσ21(X1++Xn)
    不是统计量

6.2.2 常用统计量

设样本 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)来自总体 X X X,即有
样本均值: X ‾ = 1 n ∑ i = 1 n X i \displaystyle\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i X=n1i=1nXi
未修正的样本方差: s 0 2 = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \displaystyle s_0^2=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 s02=n1i=1n(XiX)2
样本方差: s 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 \displaystyle s^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 s2=n11i=1n(XiX)2
样本标准差: s = s 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 \displaystyle s=\sqrt{s^2}=\sqrt{\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2} s=s2 =n11i=1n(XiX)2
样本 k k k阶原点矩: A k = 1 n ∑ i = 1 n X i k \displaystyle A_k=\frac{1}{n}\sum\limits_{i=1}^{n}X_i^k Ak=n1i=1nXik
样本 k k k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k \displaystyle B_k=\frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\overline{X})^k Bk=n1i=1n(XiX)k

协方差: S 12 = 1 2 ∑ ( X i − X ‾ ) ( Y i − Y ‾ ) \displaystyle S_{12}=\frac{1}{2}\sum(X_i-\overline{X})(Y_i-\overline{Y}) S12=21(XiX)(YiY)
相关系数: S 12 S 1 S 2 \displaystyle\frac{S_{12}}{S_1S_2} S1S2S12

设总体 X X X的均值为 E X = μ EX=\mu EX=μ,方差 D X = σ 2 DX=\sigma^2 DX=σ2,样本 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots, X_n) (X1,X2,,Xn)来自总体 X X X,则:

  • E X ‾ = μ E\overline{X}=\mu EX=μ
  • D X ‾ = 1 n σ 2 \displaystyle D\overline{X}=\frac{1}{n}\sigma^2 DX=n1σ2
  • E S 2 = σ 2 ES^2=\sigma^2 ES2=σ2

6.3.1 抽样分布

χ 2 \chi^2 χ2分布

定理: X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn独立,服从 N ( 0 , 1 ) N(0,1) N(0,1),则 ∑ i = 1 n x i 2 ∼ χ 2 ( n ) \displaystyle\sum\limits_{i=1}^{n}x_i^2\sim\chi^2(n) i=1nxi2χ2(n)

χ 2 ( n ) \chi^2(n) χ2(n)满足 E X = n , D X = 2 n EX=n,DX=2n EX=n,DX=2n

由中心极限定理, X ∼ χ 2 ( n ) X\sim\chi^2(n) Xχ2(n) n n n充分大时, X − n 2 n ∼ 近 似 N ( 0 , 1 ) \displaystyle\frac{X-n}{\sqrt{2n}}\overset{近似}{\sim}N(0,1) 2n XnN(0,1)

定理: X ∼ χ 2 ( n ) , Y ∼ χ 2 ( m ) , X , Y X\sim\chi^2(n),Y\sim\chi^2(m),X,Y Xχ2(n),Yχ2(m),X,Y独立,则 X + Y ∼ χ 2 ( m + n ) X+Y\sim\chi^2(m+n) X+Yχ2(m+n)
推论: X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn独立, X i ∼ χ 2 ( m i ) X_i\sim\chi^2(m_i) Xiχ2(mi),则 ∑ i = 1 n X i ∼ χ 2 ( ∑ i = 1 n m i ) \displaystyle\sum\limits_{i=1}^nX_i\sim\chi^2(\sum\limits_{i=1}^nm_i) i=1nXiχ2(i=1nmi)

α \alpha α分位数: P ( χ 2 > χ α 2 ( n ) ) = α P(\chi^2>\chi^2_\alpha(n))=\alpha P(χ2>χα2(n))=α

例题
【例1】已知 X ∼ χ 2 ( 10 ) , P ( X > a ) = 0.025 , P ( X < b ) = 0.05 X\sim\chi^2(10),P(X>a)=0.025,P(X<b)=0.05 Xχ2(10),P(X>a)=0.025,P(X<b)=0.05,求 a , b a,b a,b
解:
n = 10 n=10 n=10

  • P ( X > a ) = 0.025 P(X>a)=0.025 P(X>a)=0.025
    α = 0.025 \alpha=0.025 α=0.025
    a = χ 0.025 2 ( 10 ) = 20.5 a=\chi^2_{0.025}(10)=20.5 a=χ0.0252(10)=20.5
  • P ( X < b ) = 0.05 P(X<b)=0.05 P(X<b)=0.05
    P ( X < b ) = 1 − P ( X ≥ b ) = 0.05 P(X<b)=1-P(X\geq b)=0.05 P(X<b)=1P(Xb)=0.05
    P ( X > b ) = 0.95 P(X>b)=0.95 P(X>b)=0.95
    b = χ 0.95 2 ( 10 ) = 3.94 b=\chi^2_{0.95}(10)=3.94 b=χ0.952(10)=3.94

【例】 X 1 , X 2 , ⋯   , X 6 X_1,X_2,\cdots,X_6 X1,X2,,X6独立,服从 N ( 0 , 2 2 ) N(0,2^2) N(0,22),求 P ( ∑ i = 1 6 X i 2 > 6.54 ) \displaystyle P(\sum\limits_{i=1}^{6}X_i^2>6.54) P(i=16Xi2>6.54)
解:
X i ∼ N ( 0 , 2 2 ) X_i\sim N(0,2^2) XiN(0,22)
X i 2 ∼ N ( 0 , 1 ) \displaystyle\frac{X_i}{2}\sim N(0,1) 2XiN(0,1)
∑ i = 1 6 ( X i 2 ) 2 ∼ χ 2 ( 6 ) \sum\limits_{i=1}^{6}(\frac{X_i}{2})^2\sim\chi^2(6) i=16(2Xi)2χ2(6)
P ( ∑ i = 1 6 X i 2 4 > 6.54 4 ) = P ( χ 2 ( 6 ) > 1.635 ) = 0.95 \displaystyle P(\sum\limits_{i=1}^{6}\frac{X_i^2}{4}>\frac{6.54}{4})=P(\chi^2(6)>1.635)=0.95 P(i=164Xi2>46.54)=P(χ2(6)>1.635)=0.95

t t t分布

X ∼ t ( n ) X\sim t(n) Xt(n)
n ≥ 30 n\geq30 n30,则与正态分布区别很小

定理: X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X\sim N(0,1),Y\sim\chi^2(n) XN(0,1),Yχ2(n) X , Y X,Y X,Y独立,则 X Y / n ∼ t ( n ) \displaystyle\frac{X}{\sqrt{Y/n}}\sim t(n) Y/n Xt(n)

α \alpha α分位数: P ( T > t ( n ) ) = α P(T>t(n))=\alpha P(T>t(n))=α
t 1 − α ( n ) = − t α ( n ) t_{1-\alpha}(n)=-t_\alpha(n) t1α(n)=tα(n)

例题
【例3】 X ∼ N ( 2 , 1 ) , Y 1 , Y 2 , ⋯   , Y n ∼ N ( 0 , 4 ) X\sim N(2,1),Y_1,Y_2,\cdots,Y_n\sim N(0,4) XN(2,1),Y1,Y2,,YnN(0,4),彼此独立,令 T = 4 ( X − 2 ) ∑ i = 1 4 Y i 2 , P ( ∣ T ∣ > t 0 ) = 0.01 \displaystyle T=\frac{4(X-2)}{\sqrt{\sum\limits_{i=1}^{4}Y_i^2}},P(|T|>t_0)=0.01 T=i=14Yi2 4(X2),P(T>t0)=0.01,求 t 0 t_0 t0
解:
X − 2 1 ∼ N ( 0 , 1 ) , Y i − 0 2 ∼ N ( 0 , 1 ) \frac{X-2}{1}\sim N(0,1),\frac{Y_i-0}{2}\sim N(0,1) 1X2N(0,1),2Yi0N(0,1)
∑ i = 1 4 ( Y i 2 ) 2 ∼ χ 2 ( 4 ) \displaystyle\sum\limits_{i=1}^4(\frac{Y_i}{2})^2\sim\chi^2(4) i=14(2Yi)2χ2(4)
X − 2 1 ∑ i = 1 4 ( Y i 2 ) 2 / 4 = 4 ( X − 2 ) ∑ i = 1 4 Y i 2 ∼ t ( 4 ) \displaystyle\frac{\frac{X-2}{1}}{\sqrt{\sum\limits_{i=1}^{4}(\frac{Y_i}{2})^2/4}}=\frac{4(X-2)}{\sqrt{\sum\limits_{i=1}^{4}Y_i^2}}\sim t(4) i=14(2Yi)2/4 1X2=i=14Yi2 4(X2)t(4)

P ( ∣ T ∣ > t 0 ) = 0.01 P(|T|>t_0)=0.01 P(T>t0)=0.01
P ( T > t 0 ) = 0.005 P(T>t_0)=0.005 P(T>t0)=0.005
t 0 = 4.604 t_0=4.604 t0=4.604

F F F分布

F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)
定理: X ∼ χ 2 ( n 1 ) , Y ∼ χ 2 ( n 2 ) X\sim\chi^2(n_1),Y\sim\chi^2(n_2) Xχ2(n1),Yχ2(n2),则 X / n 1 Y / n 2 ∼ F ( n 1 , n 2 ) , Y / n 2 X / n 1 ∼ F ( n 2 , n 1 ) \displaystyle\frac{X/n_1}{Y/n_2}\sim F(n_1,n_2),\frac{Y/n_2}{X/n_1}\sim F(n_2,n_1) Y/n2X/n1F(n1,n2),X/n1Y/n2F(n2,n1)

推论:若 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2),则 1 F ∼ F ( n 2 , n 1 ) \displaystyle\frac{1}{F}\sim F(n_2,n_1) F1F(n2,n1)

例题
【例4】 X 1 , X 2 , ⋯   , X 6 X_1,X_2,\cdots,X_6 X1,X2,,X6独立,服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2) 2 ( X 1 2 + X 2 2 ) X 3 2 + X 4 2 + X 5 2 + X 6 2 \displaystyle\frac{2(X_1^2+X_2^2)}{X_3^2+X_4^2+X_5^2+X_6^2} X32+X42+X52+X622(X12+X22)
解:
X i σ ∼ N ( 0 , 1 ) \displaystyle\frac{X_i}{\sigma}\sim N(0,1) σXiN(0,1)
X 1 2 σ 2 + X 2 2 σ 2 ∼ χ 2 ( 2 ) , X 3 2 σ 2 + ⋯ + X 6 2 σ 2 ∼ χ 2 ( 4 ) \displaystyle\frac{X_1^2}{\sigma^2}+\frac{X_2^2}{\sigma^2}\sim\chi^2(2),\frac{X_3^2}{\sigma^2}+\cdots+\frac{X_6^2}{\sigma^2}\sim\chi^2(4) σ2X12+σ2X22χ2(2),σ2X32++σ2X62χ2(4)

( X 1 2 σ 2 + X 2 2 σ 2 ) / 2 ( X 3 2 σ 2 + ⋯ + X 6 2 σ 2 ) / 4 = 2 ( X 1 2 + X 2 2 ) X 3 2 + X 4 2 + X 5 2 + X 6 2 ∼ F ( 2 , 4 ) \displaystyle\frac{\displaystyle(\frac{X_1^2}{\sigma^2}+\frac{X_2^2}{\sigma^2})/2}{\displaystyle(\frac{X_3^2}{\sigma^2}+\cdots+\frac{X_6^2}{\sigma^2})/4}=\frac{2(X_1^2+X_2^2)}{X_3^2+X_4^2+X_5^2+X_6^2}\sim F(2,4) (σ2X32++σ2X62)/4(σ2X12+σ2X22)/2=X32+X42+X52+X622(X12+X22)F(2,4)

α \alpha α分位数: P ( F > F α ( n 1 , n 2 ) ) = α P(F>F_\alpha(n_1,n_2))=\alpha P(F>Fα(n1,n2))=α

F 1 − α ( n 1 , n 2 ) = 1 F α ( n 2 , n 1 ) F_{1-\alpha}(n_1,n_2)=\displaystyle\frac{1}{F_\alpha(n_2,n_1)} F1α(n1,n2)=Fα(n2,n1)1

例题
【例5】 F ∼ F ( 10 , 15 ) F\sim F(10,15) FF(10,15),求 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2,使得 P ( F > λ 1 ) = 0.01 , P ( F ≤ λ 2 ) = 0.01 P(F>\lambda_1)=0.01,P(F\leq\lambda_2)=0.01 P(F>λ1)=0.01,P(Fλ2)=0.01
解:

  • λ 1 = F 0.01 ( 10 , 15 ) = 3.8 \lambda_1=F_{0.01}(10,15)=3.8 λ1=F0.01(10,15)=3.8
  • P ( F ≤ λ 2 ) = P ( 1 F ≥ 1 λ 2 ) = 0.01 \displaystyle P(F\leq\lambda_2)=P(\frac{1}{F}\geq\frac{1}{\lambda_2})=0.01 P(Fλ2)=P(F1λ21)=0.01
    1 F ∼ F ( 15 , 10 ) \displaystyle\frac{1}{F}\sim F(15,10) F1F(15,10)
    λ 2 = 0.293 \lambda_2=0.293 λ2=0.293

6.3.2 正态总体下的抽样分布

(总体是正态分布,抽样本,构造统计量的分布?)

定理(一个正态总体):
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)
{ X 1 , X 2 , ⋯   , X n } \{X_1,X_2,\cdots,X_n\} {X1,X2,,Xn}为样本,
X ‾ = 1 n ∑ i = 1 n x i \displaystyle\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}x_i X=n1i=1nxi
s 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 s^2=\frac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2 s2=n11i=1n(XiX)2,则:

  • X ‾ ∼ N ( μ , σ 2 n ) \displaystyle\overline{X}\sim N(\mu,\frac{\sigma^2}{n}) XN(μ,nσ2)
    X ‾ − μ σ n ∼ N ( 0 , 1 ) \displaystyle\frac{\overline{X}-\mu}{\sigma}\sqrt{n}\sim N(0,1) σXμn N(0,1)
  • ( n − 1 ) s 2 σ 2 = 1 σ 2 ∑ i = 0 n ( X i − X ‾ ) 2 ∼ χ 2 ( n − 1 ) \displaystyle\frac{(n-1)s^2}{\sigma^2}=\frac{1}{\sigma^2}\sum\limits_{i=0}^{n}(X_i-\overline{X})^2\sim\chi^2(n-1) σ2(n1)s2=σ21i=0n(XiX)2χ2(n1)
  • X ‾ \overline{X} X X X X相互独立
  • 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) \displaystyle\frac{1}{\sigma^2}\sum\limits_{i=1}^n(X_i-\mu)^2\sim\chi^2(n) σ21i=1n(Xiμ)2χ2(n)
  • X ‾ − μ s n ∼ t ( n − 1 ) \displaystyle\frac{\overline{X}-\mu}{s}\sqrt{n}\sim t(n-1) sXμn t(n1)

定理(两个正态总体):
X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22)
{ X 1 , X 2 , ⋯   , X n 1 } , { Y 1 , Y 2 , ⋯   , Y n 2 } \{X_1,X_2,\cdots,X_{n_1}\},\{Y_1,Y_2,\cdots,Y_{n_2}\} {X1,X2,,Xn1},{Y1,Y2,,Yn2}为样本,
X ‾ = 1 n 1 ∑ i = 1 n 1 x i , Y ‾ = 1 n 2 ∑ i = 1 n 2 y i \displaystyle\overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}x_i,\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}y_i X=n11i=1n1xi,Y=n21i=1n2yi
s 1 2 = 1 n 1 − 1 ∑ i = 1 n 1 ( X i − X ‾ ) 2 , s 2 2 = 1 n 2 − 1 ∑ i = 1 n 2 ( Y i − Y ‾ ) 2 s_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2,s_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(Y_i-\overline{Y})^2 s12=n111i=1n1(XiX)2,s22=n211i=1n2(YiY)2,则:

  • ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 1 2 n 1 + σ 2 2 n 2 ∼ N ( 0 , 1 ) \displaystyle\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}\sim N(0,1) n1σ12+n2σ22 (XY)(μ1μ2)N(0,1)
  • s 1 2 / σ 1 2 s 2 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \displaystyle\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}\sim F(n_1-1,n_2-1) s22/σ22s12/σ12F(n11,n21)
  • σ 1 2 = σ 2 2 = σ \sigma_1^2=\sigma_2^2=\sigma σ12=σ22=σ时, T = ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) ( n 1 − 1 ) s 1 2 + ( n 2 − 1 ) s 2 2 n 1 + n 2 − 2 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \displaystyle T=\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\displaystyle\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) T=n1+n22(n11)s12+(n21)s22 n11+n21 (XY)(μ1μ2)t(n1+n22)

例题
【例1】 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X ‾ \overline{X} X s 2 s^2 s2分别是样本均值和样本方差,样本容量为16,求 k k k使得 P ( X ‾ > μ + k s ) = 0.95 P(\overline{X}>\mu+ks)=0.95 P(X>μ+ks)=0.95
解:
X ‾ − μ s n = 4 ( X ‾ − μ ) s ∼ t ( 16 − 1 ) \displaystyle\frac{\overline{X}-\mu}{s}\sqrt{n}=\frac{4(\overline{X}-\mu)}{s}\sim t(16-1) sXμn =s4(Xμ)t(161)
P ( X ‾ > μ + k s ) = P ( 4 ( X ‾ − μ ) s > 4 k s s ) = P ( 4 ( X ‾ − μ ) s > 4 k ) = 0.95 \displaystyle P(\overline{X}>\mu+ks)=P(\frac{4(\overline{X}-\mu)}{s}>\frac{4ks}{s})=P(\frac{4(\overline{X}-\mu)}{s}>4k)=0.95 P(X>μ+ks)=P(s4(Xμ)>s4ks)=P(s4(Xμ)>4k)=0.95
4 k = − 1.753 4k=-1.753 4k=1.753
k = − 0.438 k=-0.438 k=0.438

【例2】 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) X 1 , ⋯   , X n + 1 X_1,\cdots,X_{n+1} X1,,Xn+1为样本, X ‾ \overline{X} X s 2 s^2 s2分别是样本均值和样本方差,求 X n + 1 − X ‾ s n n n + 1 \displaystyle\frac{X_{n+1}-\overline{X}}{s_n}\sqrt{\frac{n}{n+1}} snXn+1Xn+1n 的分布
解:
X ‾ ∼ N ( μ , σ 2 ) , X n + 1 ∼ N ( μ , σ 2 ) \overline{X}\sim N(\mu,\sigma^2),X_{n+1}\sim N(\mu,\sigma^2) XN(μ,σ2),Xn+1N(μ,σ2)
X n + 1 − X ‾ ∼ N ( 0 , ( 1 + 1 n ) σ 2 ) X_{n+1}-\overline{X}\sim N(0,(1+\frac{1}{n})\sigma^2) Xn+1XN(0,(1+n1)σ2)

U = X n + 1 − X ‾ − 0 ( 1 + 1 n ) σ 2 = X n + 1 − X ‾ σ n + 1 n ∼ N ( 0 , 1 ) \displaystyle U=\frac{X_{n+1}-\overline{X}-0}{\sqrt{(1+\frac{1}{n})\sigma^2}}=\frac{X_{n+1}-\overline{X}}{\sigma\sqrt{\frac{n+1}{n}}}\sim N(0,1) U=(1+n1)σ2 Xn+1X0=σnn+1 Xn+1XN(0,1)
( n − 1 ) s n 2 σ 2 ∼ χ 2 ( n − 1 ) \displaystyle\frac{(n-1)s_n^2}{\sigma^2}\sim\chi^2(n-1) σ2(n1)sn2χ2(n1)

X n + 1 − X ‾ σ n + 1 n ( n − 1 ) s n 2 σ 2 / ( n − 1 ) ∼ t ( n − 1 ) \displaystyle\frac{\frac{X_{n+1}-\overline{X}}{\sigma\sqrt{\frac{n+1}{n}}}}{\sqrt{\frac{(n-1)s_n^2}{\sigma^2}/(n-1)}}\sim t(n-1) σ2(n1)sn2/(n1) σnn+1 Xn+1Xt(n1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值