LeetCode 5 最长回文子串

题目描述

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
例如:
给定字符串 “babad”
则最长回文子串为“bab” 或 “aba”

解析

这是一道经典问题,也有很经典的Manacher解法。
根据回文串的定义,我们能直接想到的方法就是找到中心,向两侧扩展,找到回文部分的边界即可。这样我们可以枚举每一个字符作为中心,向两侧扩展找到以该字符为中心的回文子串,并返回其中最长的即可。要注意的是,回文字符串长度是奇数和偶数时,判断方法并不完全一致,这样可以写出“中心扩展法”代码如下:

string longestPalindrome(string s) {
        int len=1,start=0;
        //奇数
        for(int i=0;i<s.size();++i){
            int k=1,tmp=1;
            while(i-k>=0&&i+k<s.size()&&s[i-k]==s[i+k]){
                tmp+=2;
                if(tmp>len){
                    len=tmp;
                    start=i-k;
                }
                ++k;
            }
            
        }
        //偶数
        for(int i=0;i<s.size();++i){
            int j=i,k=i+1,tmp=0;
            while(j>=0&&k<s.size()&&s[j]==s[k]){
                tmp+=2;
                if(tmp>len){
                    len=tmp;
                    start=j;
                }
                --j;
                ++k;
            }
        }
        return s.substr(start,len);
    }

这种方法我们需要分别讨论奇数和偶数的情况,上述的代码的两个for循环,就是分别处理这两种情况,对于奇数长度,是指以当前第i个字符为中心,逐个判断i-k和i+k位置是不是一致,是的话就继续扩展,同时如果长度达到更长,就更新长度和起点位置;对于偶数,则是从i和i+1是否一样开始,分别向左右扩展判断。
这种方法的时间复杂度是 O ( N 2 ) O(N^2) O(N2)

Manacher方法

“马拉车”是这一问题 O ( N ) O(N) O(N)的解法,思路非常巧妙。
首先为了应对奇数偶数的问题,算法对输入字符串做了扩展,将两个字符之间加入同一个特殊符号,比如’#’,同时在起始位置添加另一个特殊符号,比如’$’,避免越界。
这样做的好处是,将原字符串的所有子串都变成了奇数个,也就是一定以某个位置i为起点,左右延伸一定范围。对于奇数长度的子串,添加的‘#’是偶数个,而偶数长度的子串添加的‘#’是奇数个,所以总长度一定是奇数的。
也就是说,如果原字符串有一个奇数长度的回文子串,变换后也是以原有中心为中心扩展的,而偶数长度,则是以最中间两个字符之间添加的‘#’为中心扩展的。
比如:
aba -> $#a#b#a# 中心是b
cccc -> $#c#c#c#c# 中心是 #
经过上述步骤,原字符串的所有子串都可以看做是新字符串中的奇数长度子串。
算法需要一个数组,记为 rad , rad[i]表示以位置i字符为中心的回文子串的半径(左右延伸最长距离)。
同时记录当前能延伸到最右端的回文子串信息,分别用 id 和mx表示这个延伸到最右端的回文子串的中心,和最右位置,也即 m x = i d + r a d [ i d ] mx=id+rad[id] mx=id+rad[id]
当我们遍历到位置i的字符串时,首先包含两种情况:
第一,i<mx, 也就是i位置仍然处于id为中心的回文串内部,那么i位置存在相对于id的对称点j,并且 j = i d − ( i − i d ) = 2 ∗ i d − i j=id-(i-id)=2*id-i j=id(iid)=2idi
同理,mx也存在对称点p满足 p = 2 ∗ i d − m x p=2*id-mx p=2idmx
以id为中心的回文串就其实是p到mx这一部分。
这时以i为中心的回文串半径是多少呢?我们需要关注已经计算过(从左向右计算)i的对称点j的情况。设j的回文串最左端是pj1,右端是pj2。
首先,如下图,如果pj1位置比mx的对称点p还要靠左, 说明从pj1到 j 的子串和 j 到 pj2 处是对称的。又因为 p 到 mx 也是以 id 为中心的回文串,那么 p 到 j 的部分和 i 到 mx 的部分也是对称的。
在这里插入图片描述
由于mx右边的部分还没有遍历到,并不知道是否仍能扩展子串,所以上述情况可以说明,p 到 j 这部分和 i 到 mx 这部分是中心对称。同时 j 到 pj2 这部分在 i 的左侧也存在对称部分,但是由于mx右侧没有检查过,只能确定 mx关于i的对称点 pi1 位置到mx部分一定是个回文串。
所以 以 i 为中心的回文串半径 (rad[i])至少是 mx - i。

另一种情况,是 i 的对称点 j 的最左端并没有超过 p
在这里插入图片描述 那么显然以 j 为中心的回文串 pj1 到 pj2 全都在以id为中心的回文串内,右侧一定存在 以 i 为中心的回文子串 pi1 到 pi2,这部分全部包括在已知的回文串内,不存在截断情况,那么 以 i 为中心的回文串半径 (rad[i])至少是 rad[j]。

第二如果 i>=mx, 那么以id为中心的回文子串信息我们就用不上了,没有了已知的对称关系,此时只能将 rad[i]记为1 ,再进行扩展判断。
在这里插入图片描述综上,对于 i<mx,我们取 rad[j] 和 mx-i里的较小值(rad[j]更小说明i为中心扩展不到mx,以rad[j]为准;rad[j]更大则在i右侧超过了mx无法判断所以取mx-i),而对于i>=mx,则取1.
这就是马拉车算法非常经典的更新公式
rad[i]=mx>i?min(rad[2*id-i],mx-i):1;
这一步也是算法最难理解的,也是充分运用了已知回文串对称性的部分。
当然上述公式只是基于已知对称性给出了rad[i]的最小取值,右侧尚未遍历,完全可能出现更长的情况,所以需要进一步扩展判断,看能否进一步得到更大的rad[i]。
随后判断以 i 为中心的回文串的最右端是否超过了原有的mx,是的话就进一步更新id为 i ,而mx 更新为 i+rad[i]
同时,维护最长的半径和对应中心位置,每次遇到更长的半径,就更新这个值。这里要注意,这个半径和中心都是针对增加了特殊字符后的字符串,而非原始输入的字符串,在输出时要转化回去。
C++代码如下:

string longestPalindrome(string s) {
        string tmp="$#";
        for(auto c:s){
            tmp+=c;
            tmp+='#';
        }
        vector<int>rad(tmp.size(),0);
        int id=0,mx=0,resCenter=0,resLen=0;
        for(int i=1;i<tmp.size();++i){
            rad[i]=mx>i?min(rad[2*id-i],mx-i):1;
            while(tmp[i+rad[i]]==tmp[i-rad[i]]) ++rad[i];
            if(i+rad[i]>mx){
                id=i;
                mx=i+rad[i];
            }
            if(resLen<rad[i]){
                resLen=rad[i];
                resCenter=i;
            }
        }
        return s.substr((resCenter - resLen) / 2, resLen - 1);
    }

首先将原始字符串s增添特殊符号转化为这里的tmp字符串,然后遍历所有位置,先计算rad[i]的最小取值,再尝试能否进一步延伸,然后维护最右端回文串信息 id, mx和全局最长回文子串信息 resCenter和resLen。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值