最新扣子(Coze)案例教程:爆款《假如书籍会说话》短视频书籍推荐工作流,自媒体博主必学的提效工具,完全免费教程

最近的《假如书籍会说话》短视频火起来了,以两个人物播客对话的形式来解读书籍,星球群里有同学也想学习通过扣子工作流的方式制作这样的视频,今天斜杠君就为大家带来了教程。

流程分三步:

1、输入书籍作者、书籍名称

2、输入自媒体IP (例如:斜杠君)

3、一键生成视频

首先让我们看一下视频的效果:

原文视频:最新扣子(Coze)案例教程:爆款《假如书籍会说话》短视频书籍推荐工作流,自媒体博主必学的提效工具,完全免费教程

整体的工作流效如下:

本期《假如书籍会说话》智能体和工作流已上传至知识星球,有完整的代码、提示词和搭建流程,欢迎大家加入和斜杠君学习,‍ ‍ 还有星球VIP群和大家一起讨论噢~ (加入方法在文章结尾)

接下来,话不多说,斜杠君用最简单的方式教给大家。 大家可以关注收藏,以免之后找不到,而且也不会错过我后面的教程。

一、创建工作流

1、首先新建一个工作流。

在「工作空间」中选择资源中的「工作流」。

填写工作流信息:

2、开始节点

开始节点设置三个变量:

book_name:书籍名称。

author_name:书籍作者。

ip_name:自媒体IP(例如:斜杠君)。

3、大模型节点

大模型节点用来生成对话口播文案。

输出的内容例如:

4、生成开场数据

首先一个流程是生成开场部分:

例如上面演示视频中开始的时候,有一个《假如书籍会说话》,今日对话的...的部分。

这里面用到了「代码节点」组装数据,语音节点把「代码节点」组装的视频转为语音,然后通过「剪映小助手」的插件,获取语音的时长为后面的节点使用。

5、画板节点

画板节点用来生成视频的背景。

6、代码节点

这里加入一个「代码节点」,用来把前面大模型生成的口播文案进行分割,分割为以下这种对话的形式。

7、循环节点

分割为对话形式的数组后,我们用一个「循环节点」把对话转换为音频,并为不同的角色配上不同的声音。

这里的语音插件我们用的是扣子官方提供的语音合成插件:

由于文案内容比较多,这里我们使用了三个循环同时进行提取,其中的节点都是一样。

8、代码节点

经过上面的流程,我们有了开场白的部分、视频背景、以及对话的内容,这里我们就可以用一个「代码节点」把这些内容组装起来,在后面使用「剪映小助手」为这些内容生成视频草稿。

9、使用剪映小助手生成视频草稿

接下来开始用「剪映小助手」合成视频。

这里面涉及联步骤比较多,整体的流程是:

1、创建草稿

2、加背景图

3、添加音效

4、添加字幕

5、动画加关键帧

工作流中涉及的插件如下,大家在插件商店里搜索剪映小助手,这里可以找到对应的插件。

10、结束节点

最后在结束节点中输出草稿的地址。

11、导入剪映小助手(客户端)

我们要下载一个剪映小助手(客户端),我们把这地址粘贴到客户端中:

配置好本地剪映客户端的安装目录,点击创建剪映草稿,资源就开始下载了。

下载好以后,在剪映工具里,我们就可以看到刚刚导入的草稿了,我们点击草稿以后,就可以看到工作流做好的视频已经被导入进来了。

然后我们在剪映里导出视频就可以了。以上就是整个工作流的主要流程,由于整个工作流涉及到几十个节点,流程相对复杂,动手能力强的同学可以根据以上思路研究一下。如果想直接获取工作流,可以加入我的团队空间学习和使用。

原文地址 _免费交流群:最新扣子(Coze)案例教程:爆款《假如书籍会说话》短视频书籍推荐工作流,自媒体博主必学的提效工具,完全免费教程

基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统,个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经
<think>嗯,用户想了解Coze扣子工作流教程。首先,我需要确认用户所说的Coze是否是他们自己可能拼写错误,或者是否有其他名称的产品。不过根据常见的工具,可能是指字节跳动推出的Coze平台,它是一个AI Bot开发平台,工作流是其核心功能之一,用于自动化任务处理。 接下来,我需要回忆Coze工作流的主要功能和操作步骤。工作流通常包括触发器、节点配置、条件判断、API调用、数据处理等模块。可能需要分步骤介绍如何创建、配置和调试工作流。 用户可能需要基础的操作指南,比如如何进入工作流界面,添加节点,设置输入输出,使用变量,以及测试流程。此外,常见的使用场景示例可能对他们有帮助,比如自动化回复、数据处理或集成外部服务。 需要确保回答结构清晰,分步骤说明,并且语言简洁。同时,要检查是否遵循了系统级指令,比如数学公式的格式,但在这个问题中可能用不到数学公式。不过还是要留意,如果有变量或代码块,可能需要用反引号包裹。 另外,用户可能遇到问题,比如节点配置错误或调试失败,可以醒他们检查输入输出格式,或者查看官方文档。最后,附上官方资源链接会更好,但不确定是否允许,所以可能需要建议他们访问官网或社区。 现在组织回答结构:先介绍工作流是什么,然后分步骤讲解创建流程,再给出示例,最后注意事项和总结。确保每个步骤都有编号或小标题,方便用户跟随。</think>以下是为您整理的Coze扣子平台)工作流操作指南,分步骤解析核心功能与使用方法: --- ### 一、工作流基础概念 **作用**:通过可视化节点串联复杂任务,实现自动化处理(如多步计算、API调用、条件判断等)。 --- ### 二、操作步骤详解 #### 1. **创建工作流** - 进入Bot编辑页 → 点击「工作流」→「新建」 - 命名工作流并填写描述(建议明确功能) #### 2. **配置输入参数** - 点击「输入参数」→「添加参数」 - 定义变量名称、类型(文本/数字/布尔值等)及描述 *示例:添加`user_query`接收用户问* #### 3. **添加节点与逻辑 **(1) 基础节点类型** - **代码节点**:执行Python脚本(支持数据处理) - **API调用**:接入外部服务(需配置URL/Headers) - **条件分支**:通过`if-else`控制流程走向 - **大语言模型**:调用AI生成文本 **(2) 节点连接技巧** - 拖动节点右侧「+」建立连接线 - 通过`{{变量名}}`引用上游输出值 *示例:`{{api_response.data}}`* #### 4. **调试与测试** - 点击右上角「调试」→ 输入测试参数 - 逐节点查看执行状态与数据流向 - 修改错误节点后需重新保存 --- ### 三、实用案例演示 **场景**:自动生成天气醒 1. 输入参数:`location`(城市名) 2. 添加「API节点」调用天气接口 3. 添加「条件节点」判断是否下雨 - 是 → 调用LLM生成带伞醒 - 否 → 返回基础天气信息 --- ### 四、注意事项 1. **变量作用域**:每个节点的输出需手动传递到下游 2. **错误处理**:建议为API节点设置重试机制 3. **性能优化**:避免在循环中频繁调用收费API --- ### 五、学习资源推荐 1. 官方文档:`coze.com/docs/workflows`(需替换为真实地址) 2. 社区案例库:平台内置的模板中心 3. 调试技巧:善用「控制台日志」输出中间值 如需特定场景的配置演示,可供具体需求进一步详解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值