AI智能体|扣子(Coze)搭建【小红书爆款搞笑牛马打工人】工作流

大家好,我是偶然,AI洞察,AI智能体,AI实战案例分享

在广州当牛马的小伙伴,上周应该都经历了一场大暴雨,说实话,我也是第一次体验这种被堵在地铁没法出去的情况。

别问博主为啥坐地铁当牛马,不是开小汽车,我只能说那不就是你懂的吗?

那天的大暴雨,是真的大,被堵在地铁这种帖子都被人发在小某书上了,而且获得了很多人的点赞,但最让我破防的是我圈出来的那条评论。

Image

不知道在看的小伙伴有没有那天被堵地铁口的,可以打在评论区上,反正我就是其中之一。

被堵不用上班当然爽,毕竟每个牛马都想过那种边赚边玩的日子,来这个世界毕竟不是只为了当牛马,还希望能体验生活,看看世界的美景。

至少我不想一直当牛马,想去看看世界呢不是。

我知道肯定有很多打工人对现在的职场环境也好,对公司也好多少都有点抱怨在的,所以我就整了这个牛马打工人嘴替的工作流。

我们先来看看这个工作流的效果。

Image

而且这类视频在小某书上的数据非常的好,所以兄弟姐妹们快,冲冲冲。

Image

Image

需求分析

需求一:职场形式不太乐观,牛马工作太多了,尤其像我这样初入职场的,老板希望把命都给他干活那种,搞得咱们这种牛马怨气冲天。

该工作流生成的图片,成为打工人的嘴替,替打工人表达内心想吐槽的话,缓解打工压力的同时能给打工人提供情绪价值。

顺手说一嘴,情绪价值真的真的太重要了,做自媒体的一定要注意这方面的事情。

需求二:小牛马想整点副业,缓解一下生活所迫的现状,但又找不到好的方式。

该工作流生成的图片,流量不错,能给小牛马的副业带来不错的收益。

你不要问我变现方式是什么,我直接积累粉丝,到了一定程度,我反手就成为一个美妆博主,之前很多治愈奶奶的账号就是这样干的。

工作流流程分析

整体的时间流程如下。

Image

Coze 的工作流流程如下。

Image

牛马打工人图文工作流教程

第一步,开始节点

开始节点设置一个参数为 input 作为图文的主题内容。

Image

第二步,图片内容节点(大模型)

这个节点只设置一个输入参数,input 目的是承接开始节点传来的主题是什么,然后根据主题生成相应的内容。

选择豆包模型就行,豆包就够了。

Image

输出节点为一个数组,因为一个图片包含了两段内容,一个是记者的采访,另外一个是牛马的答复,要记住这里是数组的参数类型!!!

那么这里参数 Swenan 为记者询问, Xwenan 为打工牛马回复。

Image

系统提示词

#角色
你是专业的小红书打工牛马图文生成助手,擅长搜索小红书上爆款的打工人图文文案,能够生成具有小红书风格的牛马图片提示词以及与图片配套的文案,以幽默风趣且符合打工人群体的语言风格来呈现内容。
### 技能 1: 生成配套文案
1.依据搜索到的爆款文案风格,分别创作上场景记者提问的文案以及下场景打工人牛马回答的搞笑文案,上下文案要紧密联系,不能偏离太离谱,文案字数10-20字之间。
2.文案要能够引起打工人的共鸣,语言爆笑幽默,可使用网络流行语。===回复示例===
上场景记者提问文案:打工人们天天加班为什么?下场景打工人牛马回答文案:还不是为了那碎银几两!===示例结束===
3.上场景文案输出到变量Swenan,下场景文案输出到Xwenan
## 限制:
-只讨论与小红书打工牛马图文生成相关的内容,拒绝回答无关话题所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。
生成的单条文案应在 20 字以内。
-只会输出通过工具搜索到的相关内容,确保信息来源为小红书上的爆款
内容。
请使用 Markdown的^^形式说明引用来源(若有)

第三步,图像生成节点

这里的话,没有输入参数,同时我为了简单一点,直接手动输入提示词了,没有用 input 作为提示词,因此,它只能生成同一种类型的图片。

但我们需要注意模型的选择,以及图片的比例,生成质量:25。

Image

正向提示词

一张卡通风格的图片,图片分为上下两个场景,上部分卡通牛闭口听记者说话,下部分卡通牛开口回答记者,主体是棕色毛发、白色大牛角、穿蓝色背带和红色领带的毛绒质感卡通牛,处于只展示上半身的采访场景,记者仅露出手持带 “WJTV” 标志麦克风的手,背景是有电脑和文件堆满等元素的办公场景,内容整体风格活泼,适合互动编辑场景

第四步,画板节点

画板节点一共有三个参数, data ,Swenan , Xwenan ,分别来源于图像生成的 data 以及 大模型的相应参数

Image

画板编辑

之前有人说我发布的内容有所保留,说实话,前两篇确实有部分保留了,但这篇毫无保留直接教大家,如果你做不出,那也不能怪我了,我真没保留了。

三个参数,分别对应用红色的箭头进行表示了,根据其选择引用的变量就行了,如果你基础到连变量引用都不会选择的话,是吧,那这就欢迎你加入我们了。

Image

第五步,结束节点

设置一个输出节点 output ,数据来源就是画板生成的牛马打工人图片了。

但我们需要注意,这里的变量值类型是图片类型!!

Image

总结

整体的工作流有 5 步,说实话,我觉得非非非非常的简单,毕竟这是低配版,每次只生成一张图片,而且还是同一个类型图像的图片。

至于高阶版,直接一键生成完整笔记的不能给大家公布哈,毕竟是陪伴群分享过的,再拿来冕费,我怕对陪伴群的小伙伴不公平。

大家快去试试看吧,这次真的没有私藏干货了,跟着操作一定能实现。

最后说一嘴,牛马打工人要注意身体,钱没了可以再当牛马,感觉顶不住的时候,躺平也不丢人,即使外界对 gap 有偏见,但博主尊重你,我也 gap 过,不丢脸的。

感谢你的耐心。

如果看完喜欢,请帮忙转发分享一下,你的点赞转发,就是我更新下去的动力!

### 关于AI智能体Coze的实战教程视频 对于希望深入了解并实践使用Coze平台构建AI智能体的学习者而言,存在多渠道获取相关教学资源的方式。除了文字性的指导文档外,确实也有不少实战教程视频可以帮助更直观地理解整个流程[^1]。 许多在线教育平台和社交媒体平台上都有针对Coze智能体制作的教学视频。这类视频通常会详细介绍从注册账号到最终部署智能体的所有环节,包括但不限于创建智能体的具体界面操作演示、编写高效提示词的实际案例分析、配置各种技能模块的方法介绍等[^3]。 为了找到最适合个需求的教程视频,建议访问官方提供的资料库或者社区论坛,在那里往往能找到由开发者团队精心准备的内容;同时也可以关注一些知名的技术博主或UP主,他们经常会分享基于最新版本的功能解读和个实践经验总结而成的高质量视频教程[^4]。 此外,参与线上线下的技术交流活动也是不错的选择之一,通过与其他爱好者的互动可以获得一手的信息源链接或是内部培训课程的机会[^5]。 ```python # 示例代码用于展示如何在网络环境中搜索特定主题的相关多媒体资源 import requests def search_tutorial_videos(keyword): url = f"https://api.example.com/search?q={keyword}&type=video" response = requests.get(url) videos = response.json() for video in videos['results']: print(f"Title: {video['title']}, URL: {video['url']}") search_tutorial_videos('Coze AI Agent Tutorial') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值