AI智能体 | 使用Coze一键制作“假如书籍会说话”视频,18个作品狂吸17.6万粉,读书博主新标杆!(附保姆级教程)

目录

一、整体工作流设计

二、制作工作流

2.1 开始节点

2.2 大模型_生成对话文案

2.3 代码_字幕切割

2.4 画板_对话背景

2.5 循环_对话语音01

2.5.1 选择器_2

2.5.2 语音合成02

2.5.3 语音合成03

2.5.4 变量聚合_1

2.5.5 视频合成01

2.6 循环_3

2.6.1 选择器_3

2.6.2 语音合成04

2.6.3 语音合成05

2.6.4 变量聚合_2

2.6.5 视频合成02

2.7 大模型_关键词提取

2.8 循环_2

2.8.1 选择器_1

2.8.2 语音合成

2.8.3 语音合成01

2.8.4 变量聚合

2.8.5 视频合成

2.9 代码_开场文案

2.10 语音合成_开场音频

2.11 视频合成03

2.12 代码_开场数据组装

2.13 代码_整理视频数据

2.14 创建草稿

2.15 add_images_背景图

2.16 add_audios_开场音频

2.17 add_audios_开场音效2

2.18 add_audios_开场音效1

2.19 add_audios_字幕音频

2.20 add_images_角色图片

2.21 add_images_角色图片_1

2.22 代码_关键帧

2.23 添加关键帧

2.24 添加关键帧01

2.25 字符转列表_假如书籍会说话

2.26 字幕_开场1

2.27 添加字幕_转场1

2.28 str_to_list_今日对话

2.29 caption_infos开场2

2.30 add_captions_开场2

2.31 str_to_list_书籍名称展示

2.32 caption_infos开场3

2.33 add_captions_开场3

2.34 add_captions_主持人

2.35 add_captions_书籍

2.36 save_draft

2.37 结束节点

三、下载视频


最近刷短视频,看看这个账号非常的火,只发了18个作品,用了一个月时间涨到了17.6万粉丝,获赞41.1万,又一个新型高质量值得对标的读书博主。

如果使用传统的方法的话,对于小白来说剪辑难度巨大,需要多种工具结合一起用,费时费力,小白非常容易放弃。但是呢,我这里有一套Coze工作流,利用AI智能体就能够一键生成这类型的视频,接下来我将手把手教大家如何搭建这样一款工作流。

先看看我生成的视频效果吧👇

<think>好的,我现在需要帮用户解决如何使用扣子工具搭建小红书集采工作流的问题。首先,我要回顾用户提供的引用内容,看看里面有没有相关的信息。 用户给的引用1到4都是关于使用扣子Coze)搭建小红书相关的工作流,比如生成爆款文案、段子、梗图等。特别是引用1提到了角色设定、技能和限制,引用2和4提到了工作流的设计目标和结果展示,引用3则讲到大模型节点的使用。这些信息应该能帮助我构建一个集采工作流的步骤。 接下来,我需要明确用户的需求。用户提到“集采工作流”,可能是指集中采集内容或者批量生成内容的工作流。小红书的集采可能涉及内容采集、处理、发布等环节。根据引用中的案例,扣子工具可以通过工作流自动化这些步骤。 然后,我应该按照用户的要求,分步骤说明搭建过程。第一步可能需要创建智能体,设定角色和目标,比如内容采集和管理。第二步配置技能模块,可能包括数据抓取、内容分析、格式化输出等。第三步设计工作流,连接不同的节点,比如触发条件、数据处理、大模型生成、存储等。第四步测试和优化,确保工作流运行顺畅。第五步部署和监控,让用户能够实际使用并调整。 需要注意引用中的提示词配置,比如引用1中的角色设定和技能,引用3中的大模型节点配置,这些都需要整合到工作流的设计中。同时,要确保符合小红书的平台风格,使用合适的语言和格式。 可能还需要考虑如何集成外部工具,比如爬虫获取数据,或者图片生成工具,如引用4中的图片效果展示。此外,引用2提到的热门趋势和用户喜好分析,应该在内容处理环节加入,确保采集的内容符合爆款标准。 最后,用户可能需要相关问题的建议,比如性能优化、多平台整合、数据安全等,这些可以作为相关问题部分,帮助用户进一步探索。</think>### 分步教程使用扣子(Coze)搭建小红书集采工作流 #### 一、核心概念理解 1. **集采工作流定义**:通过自动化流程实现小红书内容批量采集、分析、格式化输出及发布管理[^2][^3] 2. **扣子工具特性**: - 可视化工作流设计界面 - 支持多节点串联(数据采集→处理→输出) - 集成大语言模型优化内容质量[^3] #### 二、搭建步骤详解 1. **创建智能体** ```python # 基础配置示例 agent_config = { "name": "小红书集采处理器1.0", "description": "支持批量采集、智能分类、爆款内容格式化输出", "platform": "小红书" } ``` - 角色设定:具备内容识别、趋势分析、格式转换能力的数字助手[^1] - 限制条件:聚焦内容合规性审查与平台规范适配[^1] 2. **配置技能模块 - 数据采集层: ```python def data_crawler(keywords): # 集成爬虫接口采集目标内容 return raw_data ``` - 内容分析层: ```python def content_analyzer(text): # 调用大模型进行爆款指数评估 return {"trend_score": 0.92, "keywords": [...]} ``` - 输出格式化层: ```python def format_output(content): # 按小红书规范添加话题标签#、emoji符号等[^1] return final_content ``` 3. **工作流设计(节点配置)** ```mermaid graph LR A[触发条件] --> B[数据采集] B --> C[内容清洗] C --> D{质量评估} D -->|达标| E[格式转换] D -->|不达标| F[异常处理] E --> G[存储至数据库] ``` - 关键节点参数配置: $$ \text{质量评估阈值} = \alpha \times \text{互动率} + \beta \times \text{关键词匹配度} $$ 其中$\alpha=0.6$, $\beta=0.4$[^2] 4. **测试与优化 - 测试用例设计: ```python test_cases = [ {"input": "美妆教程", "expected_output": "#美妆分享..."}, {"input": "健身指南", "expected_output": "💪健身干货..."} ] ``` - 优化策略:通过A/B测试调整大模型温度参数$T \in (0,1]$控制输出多样性[^3] 5. **部署与监控 - 设置自动触发条件:每日9:00/12:00/19:00定时执行[^4] - 监控仪表盘指标: $$ \text{处理效率} = \frac{\text{成功处理量}}{\text{总请求量}} \times 100\% $$ #### 三、高功能扩展 1. **图片处理集成**:调用DALL·E/Midjourney生成配图[^4] 2. **竞品分析模块**:实时对比同类爆款内容特征[^2] 3. **风险控制层**:添加敏感词过滤函数 ```python def content_filter(text): with open('blocked_words.txt') as f: blocked = set(f.readlines()) return any(word in text for word in blocked) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李同学Lino

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值