1.POJ3744 Scout YYF I
输入n表示共有n个地雷(0<n<=10),并且输入每个地雷所在的位置ai(ai为不大于10^8的正整数)。
现在求从1号位置出发越过所有地雷的概率。用两种行走方式:①走一步 ②走两步(不会踩爆中间那个雷)。这两个行为的概率分别为p和(1-p)。
我们首先考虑每个点要跨过地雷,一定是在地雷前一步的位置走了一个两步的方案,所以我们将每个块的概率相乘,这样问题就是成为了计算到每个地雷前一个点的概率
这个就可以用到概率dp进行计算
f[i]=f[i-1]*p+f[i-2]*(1-p)
然后加上一个矩阵快速幂加速就行了
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
using namespace std;
const int maxn=1005;
int n,a[maxn];
double p;
struct Matrix
{
double s[5][5];
void init(double p)
{
s[1][1]=p; s[1][2]=1-p;
s[2][1]=1; s[2][2]=0;
}
Matrix operator *(const Matrix &oth) const
{
Matrix c={};
for(int k=1;k<=2;k++)
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
c.s[i][j]+=s[i][k]*oth.s[k][j];
return c;
}
};
Matrix qpow(Matrix aa,int b)
{
Matrix base={};
for(int i=1;i<=2;i++) base.s[i][i]=1;
while(b>0)
{
if(b&1) base=base*aa;
aa=aa*aa; b>>=1;
}
return base;
}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
while(~scanf("%d%lf",&n,&p))
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+n+1);
double ans=1;
for(int i=1;i<=n;i++)
{
if(a[i]==a[i-1]+1)
{
ans=0;
break;
}
Matrix cur;
cur.init(p);
cur=qpow(cur,a[i]-a[i-1]-2);
ans*=cur.s[1][1]*(1-p);
}
printf("%.7lf\n",ans);
}
return 0;
}
2.P2059 [JLOI2013]卡牌游戏
这道题目是很好的概率dp
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
const int maxn=55;
int a[maxn];
double f[maxn][maxn];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) scanf("%d",&a[i]);
f[1][1]=1.0;
for(int i=2;i<=n;i++)
for(int j=1;j<=i;j++)
for(int k=1;k<=m;k++)
{
int c=(a[k]%i==0)?i:a[k]%i;
if(c>j) f[i][j]+=f[i-1][i-c+j]/(double)m;
else if(c<j) f[i][j]+=f[i-1][j-c]/(double)m;
}
for(int i=1;i<=n;i++)
printf("%.2lf%% ",f[n][i]*100.0);
return 0;
}
3.P1654 OSU!
代码
#include<bits/stdc++.h>
using namespace std;
int n;
const int maxn=1e5+5;
double p[maxn],f1[maxn],f2[maxn],ans[maxn];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf",&p[i]);
for(int i=1;i<=n;i++)
{
f1[i]=(f1[i-1]+1)*p[i];
f2[i]=(f2[i-1]+2*f1[i-1]+1)*p[i];
ans[i]=ans[i-1]+(3*f1[i-1]+3*f2[i-1]+1)*p[i];
}
printf("%.1f",ans[n]);
return 0;
}
4.P1850 [NOIP2016 提高组] 换教室
代码
#include<bits/stdc++.h>
using namespace std;
int n,m,e,v;
const int maxn=2005;
const double inf=1e18;
double p[maxn],dp[maxn][maxn][2];
int c[maxn],d[maxn],h[maxn];
int mp[maxn][maxn];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&v,&e);
for(int i=1;i<=n;i++) scanf("%d",&c[i]);
for(int i=1;i<=n;i++) scanf("%d",&d[i]);
for(int i=1;i<=n;i++) scanf("%lf",&p[i]);
int x,y,z;
memset(mp,63,sizeof(mp));
for(int i=1;i<=e;i++)
{
scanf("%d%d%d",&x,&y,&z);
mp[x][y]=mp[y][x]=min(z,mp[x][y]);
}
for(int k=1;k<=v;k++)
for(int i=1;i<=v;i++)
for(int j=1;j<=v;j++)
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
for(int i=1;i<=v;i++) mp[i][i]=0,mp[0][i]=0,mp[i][0]=0;
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
dp[i][j][0]=dp[i][j][1]=inf;
dp[1][0][0]=dp[1][1][1]=0;
for(int i=2;i<=n;i++)
{
dp[i][0][0]=dp[i-1][0][0]+mp[c[i-1]][c[i]];
for(int j=1;j<=min(i,m);j++)
{
dp[i][j][0]=min(dp[i][j][0],dp[i-1][j][0]+mp[c[i-1]][c[i]]);
dp[i][j][0]=min(dp[i][j][0],dp[i-1][j][1]+mp[c[i-1]][c[i]]*(1-p[i-1])+mp[d[i-1]][c[i]]*p[i-1]);
dp[i][j][1]=min(dp[i][j][1],dp[i-1][j-1][0]+mp[c[i-1]][d[i]]*p[i]+mp[c[i-1]][c[i]]*(1-p[i]));
dp[i][j][1]=min(dp[i][j][1],dp[i-1][j-1][1]+mp[c[i-1]][c[i]]*(1-p[i-1])*(1-p[i])+mp[c[i-1]][d[i]]*p[i]*(1-p[i-1])+mp[d[i-1]][c[i]]*p[i-1]*(1-p[i])+mp[d[i-1]][d[i]]*p[i-1]*p[i]);
}
}
double ans=inf;
for(int i=0;i<=m;i++)
ans=min(ans,min(dp[n][i][0],dp[n][i][1]));
printf("%.2lf",ans);
return 0;
}
5.P4035 [JSOI2008]球形空间产生器
高斯消元 / 以前也用模拟退火做过一次
代码
#include<bits/stdc++.h>
using namespace std;
int n;
double a[12][12],b[12],c[12][12];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n+1;i++)
for(int j=1;j<=n;j++)
scanf("%lf",&a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
c[i][j]=2*(a[i][j]-a[i+1][j]);
b[i]+=a[i][j]*a[i][j]-a[1+i][j]*a[i+1][j];
}
for(int i=1;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
if(c[j][i]>1e-8)
{
for(int k=1;k<=n;k++)
swap(c[i][k],c[j][k]);
swap(b[i],b[j]);
}
}
for(int j=1;j<=n;j++)
{
if(i==j) continue;
double am=c[j][i]/c[i][i];
for(int k=1;k<=n;k++) c[j][k]-=c[i][k]*am;
b[j]-=b[i]*am;
}
}
for(int i=1;i<=n;i++) printf("%.3lf ",b[i]/c[i][i]);
return 0;
}
6.BZOJ3270 博物馆
题目描述
有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆。这座博物馆有着特别的样式。它包含由m条走廊连接的n间房间,并且满足可以从任何一间房间到任何一间别的房间。
两个人在博物馆里逛了一会儿后两人决定分头行动,去看各自感兴趣的艺术品。他们约定在下午六点到一间房间会合。然而他们忘记了一件重要的事:他们并没有选好在哪儿碰面。等时间到六点,他们开始在博物馆里到处乱跑来找到对方(他们没法给对方打电话因为电话漫游费是很贵的)
不过,尽管他们到处乱跑,但他们还没有看完足够的艺术品,因此他们每个人采取如下的行动方法:每一分钟做决定往哪里走,有Pi 的概率在这分钟内不去其他地方(即呆在房间不动),有1-Pi 的概率他会在相邻的房间中等可能的选择一间并沿着走廊过去。这里的i指的是当期所在房间的序号。在古代建造是一件花费非常大的事,因此每条走廊会连接两个不同的房间,并且任意两个房间至多被一条走廊连接。
两个男孩同时行动。由于走廊很暗,两人不可能在走廊碰面,不过他们可以从走廊的两个方向通行。(此外,两个男孩可以同时地穿过同一条走廊却不会相遇)两个男孩按照上述方法行动直到他们碰面为止。更进一步地说,当两个人在某个时刻选择前往同一间房间,那么他们就会在那个房间相遇。
两个男孩现在分别处在a,b两个房间,求两人在每间房间相遇的概率。
输入格式
第一行包含四个整数,n表示房间的个数;m表示走廊的数目;a,b (1 ≤ a, b ≤ n),表示两个男孩的初始位置。
之后m行每行包含两个整数,表示走廊所连接的两个房间。
之后n行每行一个至多精确到小数点后四位的实数 表示待在每间房间的概率。
题目保证每个房间都可以由其他任何房间通过走廊走到。
输出格式
输出一行包含n个由空格分隔的数字,注意最后一个数字后也有空格,第i个数字代表两个人在第i间房间碰面的概率(输出保留6位小数)
注意最后一个数字后面也有一个空格
样例输入
2 1 1 2 1 2 0.5 0.5
样例输出
0.500000 0.500000
提示
对于100%的数据有 n <= 20,n-1 <= m <= n(n-1)/2
题目来源
高斯消元
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=22;
const int maxm=405;
int n,m,x,y,cnt,d[maxn],id[maxn][maxn];
vector <int> G[maxn];
double p[maxn],a[maxm][maxm],ans[maxm];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&x,&y);
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
d[u]++; d[v]++;
}
for(int i=1;i<=n;i++)
scanf("%lf",&p[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
id[i][j]=++cnt;
if(i!=j) a[cnt][cnt]=p[i]*p[j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)
{
for(int k=0;k<G[i].size();k++)
{
int t=G[i][k];
a[id[t][j]][id[i][j]]+=(1-p[i])*p[j]/d[i];
}
for(int k=0;k<G[j].size();k++)
{
int t=G[j][k];
a[id[i][t]][id[i][j]]+=p[i]*(1-p[j])/d[j];
}
for(int k1=0;k1<G[i].size();k1++)
for(int k2=0;k2<G[j].size();k2++)
{
int t1=G[i][k1],t2=G[j][k2];
a[id[t1][t2]][id[i][j]]+=(1-p[i])*(1-p[j])/(d[i]*d[j]);
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[id[i][j]][id[i][j]]-=1.0;
a[id[x][y]][cnt+1]=-1;
for(int i=1;i<=cnt;i++)
{
int tmp=i;
for(int j=i+1;j<=cnt;j++)
if(abs(a[j][i])>abs(a[tmp][i]))
tmp=j;
if(tmp!=i)
{
for(int j=1;j<=cnt+1;j++)
swap(a[tmp][j],a[i][j]);
for(int j=i+1;j<=cnt;j++)
{
double am=a[j][i]/a[i][i];
for(int k=i;k<=cnt+1;k++)
a[j][k]-=a[i][k]*am;
}
}
}
ans[cnt]=a[cnt][cnt+1]/a[cnt][cnt];
for(int i=cnt-1;i>=1;i--)
{
double am=a[i][cnt+1];
for(int j=i+1;j<=cnt;j++)
am-=a[i][j]*ans[j];
ans[i]=am/a[i][i];
}
for(int i=1;i<=n;i++)
printf("%.6lf ",ans[id[i][i]]);
return 0;
}