深度学习之轻量型网络shufflenet

本文参考以下链接,如有侵权,联系删除
参考

shufflenet-cvpr2017

shufflenet
An Extremely Efficient Convolutional Neural Network for Mobile Devices

概要

ShuffleNet是Face++的一篇关于降低深度网络计算量的论文,号称是可以在移动设备上运行的深度网络。这篇文章可以和MobileNet、Xception和ResNeXt结合来看,因为有类似的思想。卷积的group操作从AlexNet就已经有了,当时主要是解决模型在双GPU上的训练。ResNeXt借鉴了这种group操作改进了原本的ResNet。MobileNet则是采用了depthwise separable convolution代替传统的卷积操作,在几乎不影响准确率的前提下大大降低计算量。Xception主要也是采用depthwise separable convolution改进Inception v3的结构。

该文章主要采用channel shuffle、pointwise group convolutions和depthwise separable convolution来修改原来的ResNet单元,接下来依次讲解。

channel shuffle

这就要先从group操作说起,一般卷积操作中比如输入feature map的数量是N,该卷积层的filter数量是M,那么M个filter中的每一个filter都要和N个feature map的某个区域做卷积,然后相加作为一个卷积的结果。假设你引入group操作,设group为g,那么N个输入feature map就被分成g个group,M个filter就被分成g个group,然后在做卷积操作的时候,第一个group的M/g个filter中的每一个都和第一个group的N/g个输入feature map做卷积得到结果,第二个group同理,直到最后一个group,如Figure1(a)。不同的颜色代表不同的group,图中有三个group。这种操作可以大大减少计算量,因为你每个filter不再是和输入的全部feature map做卷积,而是和一个group的feature map做卷积。但是如果多个group操作叠加在一起,如Figure1(a)的两个卷积层都有group操作,显然就会产生边界效应,什么意思呢?就是某个输出channel仅仅来自输入channel的一小部分。这样肯定是不行的的,学出来的特征会非常局限。于是就有了channel shuffle来解决这个问题,先看Figure1(b),在进行GConv2之前,对其输入feature map做一个分配,也就是每个group分成几个subgroup,然后将不同group的subgroup作为GConv2的一个group的输入,使得GConv2的每一个group都能卷积输入的所有group的feature map,这和Figure1(c)的channel shuffle的思想是一样的。
在这里插入图片描述

def channel_shuffle(x, groups):
    """
    Parameters
        x: Input tensor of with `channels_last` data format
        groups: int number of groups per channel
    Returns
        channel shuffled output tensor
    Examples
        Example for a 1D Array with 3 groups
        >>> d = np.array([0,1,2,3,4,5,6,7,8])
        >>> x = np.reshape(d, (3,3))
        >>> x = np.transpose(x, [1,0])
        >>> x = np.reshape(x, (9,))
        '[0 1 2 3 4 5 6 7 8] --> [0 3 6 1 4 7 2 5 8]'
    """
    height, width, in_channels = x.shape.as_list()[1:]
    channels_per_group = in_channels // groups
    x = K.reshape(x, [-1, height, width, groups, channels_per_group])
    x = K.permute_dimensions(x, (0, 1, 2, 4, 3))  # transpose
    x = K.reshape(x, [-1, height, width, in_channels])
    return x

pointwise group convolutions

其实就是带group的卷积核为1x1的卷积,也就是说pointwise convolution是卷积核为1x1的卷积。在ResNeXt中主要是对3x3的卷积做group操作,但是在ShuffleNet中,作者是对1x1的卷积做group的操作,因为作者认为1x1的卷积操作的计算量不可忽视。可以看Figure2(b)中的第一个1x1卷积是GConv,表示group convolution。Figure2(a)是ResNet中的bottleneck unit,不过将原来的3x3 Conv改成3x3 DWConv,作者的ShuffleNet主要也是在这基础上做改动。首先用带group的1x1卷积代替原来的1x1卷积,同时跟一个channel shuffle操作,这个前面也介绍过了。然后是3x3 DWConv表示depthwise separable convolution。depthwise separable convolution可以参考MobileNet,下面贴出depthwise separable convolution的示意图。Figure2(c)添加了一个Average pooling和设置了stride=2,另外原来Resnet最后是一个Add操作,也就是元素值相加,而在(c)中是采用concat的操作,也就是按channel合并,类似googleNet的Inception操作。
在这里插入图片描述

depthwise separable convolution

其实就是将传统的卷积操作分成两步,假设原来是3x3的卷积,那么depthwise separable convolution就是先用M个3x3卷积核一对一卷积输入的M个feature map,不求和,生成M个结果,然后用N个1x1的卷积核正常卷积前面生成的M个结果,求和,最后得到N个结果。

网络结构

在这里插入图片描述

table 1 是ShuffleNet的结构表,基本上和ResNet是一样的,也是分成几个stage(ResNet中有4个stage,这里只有3个),然后在每个stage中用ShuffleNet unit代替原来的Residual block,这也就是ShuffleNet算法的核心。这个表是在限定complexity的情况下,通过改变group(g)的数量来改变output channel的数量,更多的output channel一般而言可以提取更多的特征。

实验结果

table 2 表示不同大小的ShuffleNet在不同group数量情况下的分类准确率比较。ShuffleNet sx表示将ShuffleNet 1x的filter个数变成s倍arch2表示将原来网络结构中的Stage3的两个uint移除,同时在保持复杂度的前提下widen each feature map。Table2的一个重要结论是group个数的线性增长并不会带来分类准确率的线性增长。但是发现ShuffleNet对于小的网络效果更明显,因为一般小的网络的channel个数都不多,在限定计算资源的前提下,ShuffleNet可以使用更多的feature map

在这里插入图片描述
Table3表示channel shuffle的重要性。
在这里插入图片描述
Table4是几个流行的分类网络的分类准确率对比.
在这里插入图片描述
Table5是ShuffleNet和MobileNet的对比,效果还可以。
在这里插入图片描述

总结:

ShuffleNet的核心就是
用pointwise group convolution,channel shuffle和depthwise separable convolution代替ResNet block的相应层构成了ShuffleNet uint,达到了减少计算量和提高准确率的目的。
channel shuffle解决了多个group convolution叠加出现的边界效应,
pointwise group convolution和depthwise separable convolution主要减少了计算量。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值