yolov5模型压缩-shufflenetv3

7 篇文章 11 订阅 ¥19.90 ¥99.00
本文介绍了如何使用ShuffleNetV3进行YOLOv5模型的轻量化改进,详细阐述了改进流程,包括在common.py和yolo.py中添加相关模块,并提供了shufflenetv3.yaml配置文件的创建过程。
摘要由CSDN通过智能技术生成

轻量化骨干系列(1)–shufflenetv3
参考论文:https://arxiv.org/pdf/1905.02244.pdf
shufflenetv1:https://arxiv.org/pdf/1704.04861.pdf
shufflenetv2:https://arxiv.org/pdf/1801.04381.pdf
yolov5改进流程
1、在common.py中添加如下模块:

class SimAM(nn.Module):
    def __init__(self, lamda=1e-5):
        super().__init__
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值