主动学习,半监督学习的概念的区分

本文详细介绍了主动学习和半监督学习的概念,主动学习通过选择最具信息量的未标注样本,与专家互动进行标注,降低构建高性能分类器的成本。半监督学习结合监督和无监督学习,利用少量标注数据和大量未标注数据进行训练。两者在利用未标注数据时采取不同策略,主动学习侧重筛选错误样例,半监督学习如自训练则选择最优样例。文章还探讨了两者的联系和自训练模型(纯半监督学习与直推学习)的区别。
摘要由CSDN通过智能技术生成

(一)从概念上区分

主动学习(active learning)
学习器能够主动选择包含信息量大的未标注的样例并将其交由专家进行标注,然后置入训练集进行训练,从而在训练集较小的情况下获得较高的分类正确率,这样可以有效的降低构建高性能分类器的代价。
学习器能够主动的提出一些标注请求,将一些经过筛选的数据交给专家进行标注。这个过程中最重要的是如何筛选数据进行标注。
A=(C,L,S,Q,U)
其中,C是一个或者一组分类器;L是一组已标注的训练样本集,S是监督者,也就是专家,对选择的未标注数据进行标注,Q是查询函数,用于在未标注的样本中查询信息量大的样本;U是为未标注的数据集。
主动学习的过程,是首先利用C训练L,得到一个训练好的分类器,然后Q选择U中的未标注数据给S进行标注,标注后交给L,然后再由C来进行训练,不断的循环迭代,最终达到我们的标准为止。

半监督学习(Semi-Supervised learning,SSL)
半监督学习是将监督学习和无监督学习相结合的一种学习方法。主要考虑的是如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。主要分为半监督分类,半监督回归,半监督聚类和半监督降维算法。
在SSL的研究历史中,出现了自训练(self-training),直推学习(Transductive learning),生成式模型(Generative Model)等学习方法。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值