转载:发个MatLab 自编的 均值滤波、中值滤波、高斯滤波 图像处理函数

转载 2010年06月02日 19:32:00

发个MatLab 自编的 均值滤波、中值滤波、高斯滤波 图像处理函数

虽然matlab里面有这些函数,但是攀立民老师要求自己编写,计算机视觉上有这个实验,到网上找了半天才零散的找到一些碎片,还是整理以后发上来吧!

MatLab自编的均值滤波、中值滤波、高斯滤波 图像处理函数。

%自编的均值滤波函数。x是需要滤波的图像,n是模板大小(即n×n)
function d=avefilt(x,n)   
a(1:n,1:n)=1;   %a即n×n模板,元素全是1
p=size(x);   %输入图像是p×q的,且p>n,q>n
x1=double(x);
x2=x1;
%A(a:b,c:d)表示A矩阵的第a到b行,第c到d列的所有元素
for i=1:p(1)-n+1
    for j=1:p(2)-n+1
        c=x1(i:i+(n-1),j:j+(n-1)).*a;  %取出x1中从(i,j)开始的n行n列元素与模板相乘
        s=sum(sum(c));                 %求c矩阵(即模板)中各元素之和
        x2(i+(n-1)/2,j+(n-1)/2)=s/(n*n); %将模板各元素的均值赋给模板中心位置的元素
    end
end
%未被赋值的元素取原值
d=uint8(x2);


%自编的中值滤波函数。x是需要滤波的图像,n是模板大小(即n×n)
function d=midfilt(x,n)   
p=size(x);   %输入图像是p×q的,且p>n,q>n
x1=double(x);
x2=x1;
for i=1:p(1)-n+1
    for j=1:p(2)-n+1
        c=x1(i:i+(n-1),j:j+(n-1));  %取出x1中从(i,j)开始的n行n列元素,即模板(n×n的)
        e=c(1,:);      %是c矩阵的第一行
        for u=2:n
            e=[e,c(u,:)];     %将c矩阵变为一个行矩阵   
        end
        mm=median(e);      %mm是中值
        x2(i+(n-1)/2,j+(n-1)/2)=mm;   %将模板各元素的中值赋给模板中心位置的元素
    end
end
%未被赋值的元素取原值
d=uint8(x2);



%自编的高斯滤波函数,S是需要滤波的图象,n是均值,k是方差
function d=gaussfilt(k,n,s)
Img = double(s);
n1=floor((n+1)/2);%计算图象中心
for i=1:n
    for j=1:n
      b(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(4*k))/(4*pi*k);
    end
end
%生成高斯序列b。
Img1=conv2(Img,b,'same'); %用生成的高斯序列卷积运算,进行高斯滤波
d=uint8(Img1);





%此为程序主文件,包含主要功能单元,以及对子函数进行调用
try
%实验步骤一:彩色、灰度变换
h=imread('photo.jpg'); %读入彩色图片
c=rgb2gray(h); %把彩色图片转化成灰度图片,256级
figure,imshow(c),title('原始图象'); %显示原始图象
g=imnoise(c,'gaussian',0.1,0.002);  %加入高斯噪声
figure,imshow(g),title('加入高斯噪声之后的图象');  %显示加入高斯噪声之后的图象

%实验步骤二:用系统预定义滤波器进行均值滤波
n=input('请输入均值滤波器模板大小/n');
A=fspecial('average',n);  %生成系统预定义的3X3滤波器
Y=filter2(A,g)/255;           %用生成的滤波器进行滤波,并归一化
figure,imshow(Y),title('用系统函数进行均值滤波后的结果'); %显示滤波后的图象

%实验步骤三:用自己的编写的函数进行均值滤波
Y2=avefilt(g,n);     %调用自编函数进行均值滤波,n为模板大小
figure,imshow(Y2),title('用自己的编写的函数进行均值滤波之后的结果'); %显示滤波后的图象

%实验步骤四:用Matlab系统函数进行中值滤波
n2=input('请输入中值滤波的模板的大小/n');
Y3=medfilt2(g,[n2 n2]);   %调用系统函数进行中值滤波,n2为模板大小
figure,imshow(Y3),title('用Matlab系统函数进行中值滤波之后的结果');  %显示滤波后的图象

%实验步骤五:用自己的编写的函数进行中值滤波
Y4=midfilt(g,n2);      %调用自己编写的函数进行中值滤波,
figure,imshow(Y4),title('用自己编写的函数进行中值滤波之后的结果');

%实验步骤六:用matlab系统函数进行高斯滤波
n3=input('请输入高斯滤波器的均值/n');
k=input('请输入高斯滤波器的方差/n');
A2=fspecial('gaussian',k,n3);      %生成高斯序列
Y5=filter2(A2,g)/255;              %用生成的高斯序列进行滤波
figure,imshow(Y5),title('用Matlab函数进行高斯滤波之后的结果');    %显示滤波后的图象

%实验步骤七:用自己编写的函数进行高斯滤波
Y6=gaussfilt(n3,k,g);  %调用自己编写的函数进行高斯滤波,n3为均值,k为方差
figure,imshow(Y6),title('用自编函数进行高斯滤波之后的结果');      %显示滤波后的图象

catch           %捕获异常
    disp(lasterr);     %如果程序有异常,输出
end

转载于http://pr-ml.5d6d.com/thread-444-1-1.html

MATLAB基础知识大串讲

全面学习MATLAB,从零开始,全面掌握MATLAB基础知识
  • 2016年12月27日 15:04

MatLab 自编的 均值滤波、中值滤波、高斯滤波 图像处理函数

  • 2012年05月15日 10:38
  • 16KB
  • 下载

MatLab自编的均值滤波、中值滤波、高斯滤波三种滤波算子,可以直接调用 图像处理函数

%自编的均值滤波函数。x是需要滤波的图像,n是模板大小(即n×n) function d=avefilt(x,n) a(1:n,1:n)=1; %a即n×n模板,元素全是1 p=size(x)...
  • u011177305
  • u011177305
  • 2015-05-29 13:41:04
  • 2398

数字图像处理之均值滤波,高斯滤波,中值滤波,双边滤波

滤波器作为图像处理课程的重要内容,大致可分为两类,空域滤波器和频率域滤波器。本文主要介绍常用的四种滤波器:中值滤波器、均值滤波器、高斯滤波器、双边滤波器,并基于opencv做出实现。空域的滤波器一般可...
  • qq_30356613
  • qq_30356613
  • 2017-10-28 18:45:23
  • 1629

均值滤波 中值滤波 高斯平滑滤波

高斯滤波器是根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对去除服从正态分布的噪声是很有效果的。一维零均值高斯函数为。其中,高斯分布参数决定了高斯滤波器的宽度。       高斯函数具...
  • PINBODEXIAOZHU
  • PINBODEXIAOZHU
  • 2014-11-04 15:49:49
  • 6386

MATLAB几个滤波的代码

  • 2010年04月23日 15:29
  • 3KB
  • 下载

基于OpenCV底层实现均值滤波,中值滤波和高斯滤波

起因:自己也看到一些底层的实现代码,感觉代码质量不高,而且各种指针问题,这里自己实现一下,个人认为实现的还是蛮清晰的。首先,对于均值滤波和中值滤波不再介绍,code can explain. 对于高...
  • taoyanqi8932
  • taoyanqi8932
  • 2016-11-04 20:41:18
  • 3704

基于MATLAB图像处理的中值滤波、均值滤波以及高斯滤波的实现与对比

基于MATLAB图像处理的中值滤波、均值滤波以及高斯滤波的实现与对比
  • baidu_34971492
  • baidu_34971492
  • 2018-01-04 14:08:25
  • 378

【opencv学习笔记1】5种图像滤波辨析:方框、均值、高斯、中值、双边

图像滤波 什么是图像滤波 图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。...
  • chongshangyunxiao321
  • chongshangyunxiao321
  • 2016-03-26 16:42:26
  • 3690

3.高斯滤波、中值滤波MATLAB代码和结果图像

高斯滤波: H=imread('E:\Classical Images\标准测试图片\goldhill.bmp'); I=rgb2gray(H); subplot(2,3,1); imshow(H);...
  • qq_33831881
  • qq_33831881
  • 2016-12-12 14:07:09
  • 3446
收藏助手
不良信息举报
您举报文章:转载:发个MatLab 自编的 均值滤波、中值滤波、高斯滤波 图像处理函数
举报原因:
原因补充:

(最多只允许输入30个字)