学习人工智能:吴恩达《AI for everyone》2019 第1周:介绍;最简单的神经网络

本文介绍了机器学习专家吴恩达的职业背景,包括他在Coursera的课程和在GoogleBrain的贡献。文章探讨了AI、ML和DL的关系,提到了机器学习的优点和局限性,特别是关于数据量和新类型数据对学习的影响,以及最简单的神经网络如何通过大量数据自我学习复杂的映射关系。
摘要由CSDN通过智能技术生成

吴恩达 Andrew Ng, 斯坦福大学前教授,Google Brain项目发起人、领导者。

Coursera 的联合创始人和联合主席,在 Coursera 上有十万用户的《机器学习》课程;斯坦福大学计算机科学前教授。百度前副总裁、前首席科学家;谷歌最成功的人工智能项目之一——Google Brain的发起人、领导者。

参考链接: AI for everyone

第一周:介绍

ANI VS AGI, 弱AI VS 强AI,专用AI VS 通用AI


 

acquiring data 获取数据

机器学习:计算机在没有明确编程的情况下学习的能力

深度学习Deep learning = 人工神经网络Artificial Neural network

神经网络最初受到大脑的启发, 但是它工作原理几乎 完全与生物大脑的工作方式无关 

AI > ML > DL

AI company VS company using AI.

AI转型5步

机器学习的一些优点和缺点。

机器学习在试图学习一个 简单的概念时会运作良好 例如你可以用不到 一秒的脑力就可办到的事情, 以及有大量数据的事。 机器学习往往在你试图 从少量数据中学习复杂概念时 效果不佳。 人工智能中第二个 未被充分认识的弱点是: 用系统从未见过的新类型数据时执行任务, 这往往会让它表现不佳

第一周optional:最简单的神经网络

最简单的神经网络:只有一个神经元

4个神经元的神经网络

神经网路的绝妙之处

神经网路的绝妙之处就在于 当你用神经网络来创建一个机器学习系统时, 你只需要给它输入A和输出B就可以了 它自己会把中间所有的事情搞清楚 所以建立一个神经网络,你需要做的就是 给它大量的数据,即输入A,像这样 把这些蓝神经元输给一个黄色神经元 并且你也需要标明输出的数据,比如这里的客户需求 接下来就让软件来弄清楚这些蓝色需要计算什么 从而能完全自动化地,精准地 学习由输入A到输入B的功能映射。

事实证明,只要你给它足够多的数据 并且训练一个足够大的神经网络 它能极好地学习出从输入A到输出B的映射 那么,这就是一个神经网络了。

它就是一组神经元, 每个神经元会计算出一个相对简单的函数 但当你把它们像乐高积木那样堆叠在一起的话 它们可以计算出极其复杂的函数,这些函数 能极其精准地学习出输入A到输入B的映射 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ankie(资深技术项目经理)

打赏就是赞赏,感谢你的认可!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值