吴恩达 Andrew Ng, 斯坦福大学前教授,Google Brain项目发起人、领导者。
Coursera 的联合创始人和联合主席,在 Coursera 上有十万用户的《机器学习》课程;斯坦福大学计算机科学前教授。百度前副总裁、前首席科学家;谷歌最成功的人工智能项目之一——Google Brain的发起人、领导者。
参考链接: AI for everyone
第一周:介绍
ANI VS AGI, 弱AI VS 强AI,专用AI VS 通用AI
acquiring data 获取数据
机器学习:计算机在没有明确编程的情况下学习的能力
深度学习Deep learning = 人工神经网络Artificial Neural network
神经网络最初受到大脑的启发, 但是它工作原理几乎 完全与生物大脑的工作方式无关
AI > ML > DL
AI company VS company using AI.
AI转型5步
机器学习的一些优点和缺点。
机器学习在试图学习一个 简单的概念时会运作良好 例如你可以用不到 一秒的脑力就可办到的事情, 以及有大量数据的事。 机器学习往往在你试图 从少量数据中学习复杂概念时 效果不佳。 人工智能中第二个 未被充分认识的弱点是: 用系统从未见过的新类型数据时执行任务, 这往往会让它表现不佳
第一周optional:最简单的神经网络
最简单的神经网络:只有一个神经元
4个神经元的神经网络
神经网路的绝妙之处
神经网路的绝妙之处就在于 当你用神经网络来创建一个机器学习系统时, 你只需要给它输入A和输出B就可以了 它自己会把中间所有的事情搞清楚 所以建立一个神经网络,你需要做的就是 给它大量的数据,即输入A,像这样 把这些蓝神经元输给一个黄色神经元 并且你也需要标明输出的数据,比如这里的客户需求 接下来就让软件来弄清楚这些蓝色需要计算什么 从而能完全自动化地,精准地 学习由输入A到输入B的功能映射。
事实证明,只要你给它足够多的数据 并且训练一个足够大的神经网络 它能极好地学习出从输入A到输出B的映射 那么,这就是一个神经网络了。
它就是一组神经元, 每个神经元会计算出一个相对简单的函数 但当你把它们像乐高积木那样堆叠在一起的话 它们可以计算出极其复杂的函数,这些函数 能极其精准地学习出输入A到输入B的映射