命题逻辑
P P P | Q Q Q | ¬ P \neg P ¬P 否定/非 | P ∧ Q P \wedge Q P∧Q 合取/与 | P ∨ Q P \vee Q P∨Q 析取/或 | P → Q P \to Q P→Q 蕴含 | P ↔ Q P \leftrightarrow Q P↔Q 等价 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 1 | 0 | 1 | 1 | 1 | 1 |
P
→
Q
P\to Q
P→Q 的自然语言
充分条件: 如
P
P
P 则
Q
Q
Q, 只要
P
P
P 就
Q
Q
Q.
必要条件:
P
P
P 仅当
Q
Q
Q, 只有
Q
Q
Q 才
P
P
P, 除非
Q
Q
Q 才
P
P
P, 除非
Q
Q
Q 否则
¬
P
\neg P
¬P.
永真公式(重言); 永假公式(矛盾); 可满足公式.
联结词完备集: { S , ∧ , ∨ , ¬ } \{S,\wedge,\vee,\neg\} {S,∧,∨,¬}; { S , ∧ , ¬ } \{S,\wedge,\neg\} {S,∧,¬}; { S , ∨ , ¬ } \{S,\vee,\neg\} {S,∨,¬}.
析取式(子句): 有限个变元的析取.
合取式(短语): 有限个变元的合取.
析取范式: 有限个短语的析取.
合取范式: 有限个子句的合取.
化简: ①取代等价蕴含; ②De MoRGen和双重否定律去掉多余否定; ③分配律进一步化简.
最简式: 变元及否定存在且只存在一个, 变元间次序唯一.
极小项(最简合取式); 极大项(最简析取式);
n
n
n 个变元各有
2
n
2^n
2n 个极小项和极大项.
全部极小项的析取永真, 全部极大式的合取永假.
主析取范式: 有限个极小式的析取.
主合取范式: 有限个极大式的合取.
求主范式方法: ①化简; ②补项并分配律: 求主析取补
(
¬
P
∨
P
)
(\neg P\vee P)
(¬P∨P), 求主合取补
(
¬
P
∧
P
)
(\neg P\wedge P)
(¬P∧P); ③剩余极小项析取(极大项合取)的否定即得主合取(主析取) - 即主范式项数和为
2
n
2^n
2n.
等价规则: 交换律, 结合律, 分配律, 双重否定律, De MoRGan 律.
幂等律:
G
∧
G
=
G
G\wedge G=G
G∧G=G,
G
∨
G
=
G
G\vee G=G
G∨G=G.
吸收律:
G
∨
(
G
∧
H
)
=
G
G\vee(G\wedge H)=G
G∨(G∧H)=G,
G
∧
(
G
∨
H
)
=
G
G\wedge(G\vee H)=G
G∧(G∨H)=G.
同一律:
G
∧
0
=
G
G\wedge 0=G
G∧0=G,
G
∨
1
=
G
G\vee 1=G
G∨1=G.
零律:
G
∧
1
=
1
G\wedge 1=1
G∧1=1,
G
∨
0
=
0
G\vee 0=0
G∨0=0.
排中律:
G
∨
¬
G
=
1
G\vee\neg G=1
G∨¬G=1.
矛盾律:
G
∧
¬
G
=
0
G\wedge\neg G=0
G∧¬G=0.
等价:
G
↔
H
=
(
G
→
H
)
∧
(
H
→
G
)
G\leftrightarrow H=(G\to H)\wedge(H\to G)
G↔H=(G→H)∧(H→G).
蕴含:
G
→
H
=
¬
G
∨
H
G\to H=\neg G\vee H
G→H=¬G∨H.
假言易位:
G
→
H
=
¬
H
→
¬
G
G\to H=\neg H\to\neg G
G→H=¬H→¬G.
等价否定:
G
↔
H
=
¬
G
↔
¬
H
G\leftrightarrow H=\neg G\leftrightarrow\neg H
G↔H=¬G↔¬H.
归谬:
(
G
→
H
)
∧
(
G
→
¬
H
)
=
¬
G
(G\to H)\wedge(G\to\neg H)=\neg G
(G→H)∧(G→¬H)=¬G.
代入: 永真公式中某一变元永相同公式代入仍为永真.
替换: 原公式与其中出现的子公式被恒等公式替换后得到的新公式等价.
反演: 反演公式为原公式否定; 交换
∨
\vee
∨ 和
∧
\wedge
∧,
0
0
0 和
1
1
1, 所有变元取反.
对偶: 等价公式各自的对偶公式仍等价; 交换
∨
\vee
∨ 和
∧
\wedge
∧,
0
0
0 和
1
1
1.
异或:
A
∧
ˉ
B
=
¬
(
A
↔
B
)
A\bar{\wedge} B=\neg(A\leftrightarrow B)
A∧ˉB=¬(A↔B).
蕴含否定:
A
↛
B
=
¬
(
A
→
B
)
A\not\to B=\neg(A\to B)
A→B=¬(A→B).
与非:
A
↑
B
=
¬
(
A
∧
B
)
A\uparrow B=\neg(A\wedge B)
A↑B=¬(A∧B).
或非:
A
↓
B
=
¬
(
A
∨
B
)
A\downarrow B=\neg(A\vee B)
A↓B=¬(A∨B).
形式推理
G
1
,
G
2
,
.
.
.
,
G
n
⟹
H
G_1,G_2,...,G_n\implies H
G1,G2,...,Gn⟹H 有效(成立, 不一定有真实性)当且仅当
⋀
i
=
1
n
G
i
→
H
\bigwedge_{i=1}^n G_i\to H
⋀i=1nGi→H 永真.
简化规则:
G
∧
H
⟹
G
,
H
G\wedge H\implies G,H
G∧H⟹G,H.
添加规则:
G
⟹
G
∨
H
G\implies G\vee H
G⟹G∨H;
H
⟹
G
∨
H
H\implies G\vee H
H⟹G∨H.
¬
G
⟹
G
→
H
\neg G\implies G\to H
¬G⟹G→H;
H
⟹
G
→
H
H\implies G\to H
H⟹G→H;
¬
(
G
→
H
)
⟹
G
,
¬
H
\neg(G\to H)\implies G,\neg H
¬(G→H)⟹G,¬H;
G
,
H
⟹
G
∧
H
G,H\implies G\wedge H
G,H⟹G∧H.
选言三段论:
¬
G
,
G
∨
H
⟹
H
\neg G,G\vee H\implies H
¬G,G∨H⟹H;
¬
G
,
G
∨
ˉ
H
⟹
H
\neg G,G\bar{\vee}H\implies H
¬G,G∨ˉH⟹H.
肯定前件:
G
,
G
→
H
⟹
H
G,G\to H\implies H
G,G→H⟹H.
否定后件:
¬
H
,
G
→
H
⟹
¬
G
\neg H,G\to H\implies \neg G
¬H,G→H⟹¬G.
假言三段论:
G
→
H
,
H
→
I
⟹
G
→
I
G\to H,H\to I\implies G\to I
G→H,H→I⟹G→I.
二难推论:
G
∧
H
,
G
→
I
,
H
→
I
⟹
I
G\wedge H,G\to I,H\to I\implies I
G∧H,G→I,H→I⟹I.
演绎法: 规则 P(前提引用); 规则 T(逻辑结果引用, I 推理, E 等价); 规则 CP(附加前提; 按定义证明).
反证法:
G
1
,
G
2
,
.
.
.
,
G
n
,
¬
H
G_1,G_2,...,G_n,\neg H
G1,G2,...,Gn,¬H 不一致(不相容), 即
⋀
i
=
1
n
G
i
∧
¬
H
\bigwedge_{i=1}^n G_i\wedge\neg H
⋀i=1nGi∧¬H 永假(矛盾)时, 形式推理有效.
空证明:
P
P
P 为假时
P
→
Q
P\to Q
P→Q 一定为真.
平凡证明:
Q
Q
Q 为真时
P
→
Q
P\to Q
P→Q 一定为真.
归谬证明:
Q
Q
Q 为假且
¬
P
→
Q
\neg P\to Q
¬P→Q 为真时
¬
P
\neg P
¬P 一定为假, 即
P
P
P 一定为真.
分情形证明:
⋁
i
=
1
n
P
i
→
Q
=
⋀
i
=
1
n
(
P
i
→
Q
)
\bigvee{i=1}^n P_i\to Q=\bigwedge_{i=1}^n(P_i\to Q)
⋁i=1nPi→Q=⋀i=1n(Pi→Q).
等价证明:
P
1
↔
P
2
↔
.
.
.
↔
P
n
=
(
P
1
→
P
2
)
∧
(
P
2
→
P
3
)
∧
.
.
.
∧
(
P
n
→
P
1
)
P_1\leftrightarrow P_2\leftrightarrow...\leftrightarrow P_n=(P_1\to P_2)\wedge(P_2\to P_3)\wedge...\wedge(P_n\to P_1)
P1↔P2↔...↔Pn=(P1→P2)∧(P2→P3)∧...∧(Pn→P1).
谓词逻辑
n
n
n 元谓词: 个体变量定义域
x
∈
D
x\in D
x∈D,
D
n
D^n
Dn 上函数
P
(
x
1
,
x
2
,
.
.
.
,
x
n
)
P(x_1,x_2,...,x_n)
P(x1,x2,...,xn) 值域
{
0
,
1
}
\{0,1\}
{0,1}.
全称量词 -
(
∀
x
)
G
(
x
)
=
⋀
G
(
x
α
)
(\forall x)G(x)=\bigwedge G(x_\alpha)
(∀x)G(x)=⋀G(xα); 存在量词 -
(
∃
x
)
G
(
x
)
=
⋁
G
(
x
α
)
(\exists x)G(x)=\bigvee G(x_\alpha)
(∃x)G(x)=⋁G(xα).
对任意
x
x
x 满足
G
G
G, 一定有
H
H
H:
(
∀
x
)
(
G
(
x
)
→
H
(
x
)
)
(\forall x)(G(x)\to H(x))
(∀x)(G(x)→H(x)).
存在
x
x
x 满足
G
G
G, 使得
H
H
H:
(
∃
x
)
(
G
(
x
)
∧
H
(
x
)
)
(\exists x)(G(x)\wedge H(x))
(∃x)(G(x)∧H(x)).
约束变元: (合式)公式中变元出现在其量词辖域内; 否则为自由变元.
约束变元改名 - 对变元进行区分; 自由变元代入 - 改变公式含义.
闭式: 无自由变元.
有效公式; 矛盾公式; 可满足公式.
前束范式: 所有量词位于最前端, 量词辖域到末端; 即
(
Q
1
x
1
)
(
Q
2
x
2
)
.
.
.
(
Q
n
x
n
)
M
(
x
1
,
x
2
,
.
.
.
,
x
n
)
(Q_1x_1)(Q_2x_2)...(Q_nx_n)M(x_1,x_2,...,x_n)
(Q1x1)(Q2x2)...(Qnxn)M(x1,x2,...,xn); 与原公式等价.
Skolem 标准型: ①消去存在量词时, 原公式左侧有
m
≠
0
m\ne 0
m=0 个全称量词, 用
m
m
m 元函数表示, 否则用常量符号表示; ②消去全称量词时, 直接保留变元; ③不一定与原公式等价.
等价规则: 永真公式代入实例必有效(即满足命题逻辑全部等价规则)
改名规则:
(
∃
x
)
G
(
x
)
=
(
∃
y
)
G
(
y
)
(\exists x)G(x)=(\exists y)G(y)
(∃x)G(x)=(∃y)G(y);
(
∀
x
)
G
(
x
)
=
(
∀
y
)
G
(
y
)
(\forall x)G(x)=(\forall y)G(y)
(∀x)G(x)=(∀y)G(y).
量词转换律:
¬
(
∃
x
)
G
(
x
)
=
(
∀
x
)
¬
G
(
x
)
\neg(\exists x)G(x)=(\forall x)\neg G(x)
¬(∃x)G(x)=(∀x)¬G(x);
¬
(
∀
x
)
G
(
x
)
=
(
∃
x
)
¬
G
(
x
)
\neg(\forall x)G(x)=(\exists x)\neg G(x)
¬(∀x)G(x)=(∃x)¬G(x).
量词辖域扩收律:
(
∃
x
)
(
G
(
x
)
∧
S
)
=
(
∃
x
)
G
(
x
)
∧
S
(\exists x)(G(x)\wedge S)=(\exists x)G(x)\wedge S
(∃x)(G(x)∧S)=(∃x)G(x)∧S;
(
∃
x
)
(
G
(
x
)
∨
S
)
=
(
∃
x
)
G
(
x
)
∨
S
(\exists x)(G(x)\vee S)=(\exists x)G(x)\vee S
(∃x)(G(x)∨S)=(∃x)G(x)∨S;
(
∀
x
)
(
G
(
x
)
∧
S
)
=
(
∀
x
)
G
(
x
)
∧
S
(\forall x)(G(x)\wedge S)=(\forall x)G(x)\wedge S
(∀x)(G(x)∧S)=(∀x)G(x)∧S;
(
∀
x
)
(
G
(
x
)
∨
S
)
=
(
∀
x
)
G
(
x
)
∨
S
(\forall x)(G(x)\vee S)=(\forall x)G(x)\vee S
(∀x)(G(x)∨S)=(∀x)G(x)∨S.
量词分配律:
(
∃
x
)
(
G
(
x
)
∨
H
(
x
)
)
=
(
∃
x
)
G
(
x
)
∨
(
∃
x
)
H
(
x
)
(\exists x)(G(x)\vee H(x))=(\exists x)G(x)\vee (\exists x)H(x)
(∃x)(G(x)∨H(x))=(∃x)G(x)∨(∃x)H(x);
(
∀
x
)
(
G
(
x
)
∧
H
(
x
)
)
=
(
∀
x
)
G
(
x
)
∧
(
∀
x
)
H
(
x
)
(\forall x)(G(x)\wedge H(x))=(\forall x)G(x)\wedge (\forall x)H(x)
(∀x)(G(x)∧H(x))=(∀x)G(x)∧(∀x)H(x).
改名分配律:
(
∃
x
)
G
(
x
)
∧
(
∃
x
)
H
(
x
)
=
(
∃
x
)
(
∃
y
)
(
G
(
x
)
∧
H
(
x
)
)
(\exists x)G(x)\wedge (\exists x)H(x)=(\exists x)(\exists y)(G(x)\wedge H(x))
(∃x)G(x)∧(∃x)H(x)=(∃x)(∃y)(G(x)∧H(x));
(
∀
x
)
G
(
x
)
∨
(
∀
x
)
H
(
x
)
=
(
∀
x
)
(
∀
y
)
(
G
(
x
)
∨
H
(
x
)
)
(\forall x)G(x)\vee (\forall x)H(x)=(\forall x)(\forall y)(G(x)\vee H(x))
(∀x)G(x)∨(∀x)H(x)=(∀x)(∀y)(G(x)∨H(x)).
量词交换律:
(
∃
x
)
(
∃
y
)
G
(
x
,
y
)
=
(
∃
y
)
(
∃
x
)
G
(
x
,
y
)
(\exists x)(\exists y)G(x,y)=(\exists y)(\exists x)G(x,y)
(∃x)(∃y)G(x,y)=(∃y)(∃x)G(x,y);
(
∀
x
)
(
∀
y
)
G
(
x
,
y
)
=
(
∀
y
)
(
∀
x
)
G
(
x
,
y
)
(\forall x)(\forall y)G(x,y)=(\forall y)(\forall x)G(x,y)
(∀x)(∀y)G(x,y)=(∀y)(∀x)G(x,y).
推理: (同命题逻辑)
(
∀
x
)
G
(
x
)
⟹
(
∃
x
)
G
(
x
)
(\forall x)G(x)\implies (\exists x)G(x)
(∀x)G(x)⟹(∃x)G(x).
(
∃
x
)
(
G
(
x
)
∧
H
(
x
)
)
⟹
(
∃
x
)
G
(
x
)
∧
(
∃
x
)
H
(
x
)
(\exists x)(G(x)\wedge H(x))\implies (\exists x)G(x)\wedge (\exists x)H(x)
(∃x)(G(x)∧H(x))⟹(∃x)G(x)∧(∃x)H(x);
(
∀
x
)
(
G
(
x
)
∨
H
(
x
)
)
⟹
(
∀
x
)
G
(
x
)
∨
(
∀
x
)
H
(
x
)
(\forall x)(G(x)\vee H(x))\implies (\forall x)G(x)\vee (\forall x)H(x)
(∀x)(G(x)∨H(x))⟹(∀x)G(x)∨(∀x)H(x).
(
∃
x
)
(
G
(
x
)
→
H
(
x
)
)
⟹
(
∃
x
)
G
(
x
)
→
(
∃
x
)
H
(
x
)
(\exists x)(G(x)\to H(x))\implies (\exists x)G(x)\to (\exists x)H(x)
(∃x)(G(x)→H(x))⟹(∃x)G(x)→(∃x)H(x);
(
∀
x
)
(
G
(
x
)
→
H
(
x
)
)
⟹
(
∀
x
)
G
(
x
)
→
(
∀
x
)
H
(
x
)
(\forall x)(G(x)\to H(x))\implies (\forall x)G(x)\to (\forall x)H(x)
(∀x)(G(x)→H(x))⟹(∀x)G(x)→(∀x)H(x).
(
∃
x
)
(
∀
y
)
G
(
x
,
y
)
⟹
(
∀
y
)
(
∃
x
)
G
(
x
,
y
)
(\exists x)(\forall y)G(x,y)\implies (\forall y)(\exists x)G(x,y)
(∃x)(∀y)G(x,y)⟹(∀y)(∃x)G(x,y);
(
∀
x
)
(
∀
y
)
G
(
x
,
y
)
⟹
(
∃
y
)
(
∃
x
)
G
(
x
,
y
)
(\forall x)(\forall y)G(x,y)\implies (\exists y)(\exists x)G(x,y)
(∀x)(∀y)G(x,y)⟹(∃y)(∃x)G(x,y);
(
∀
y
)
(
∀
x
)
G
(
x
,
y
)
⟹
(
∃
x
)
(
∀
x
)
G
(
x
,
y
)
(\forall y)(\forall x)G(x,y)\implies (\exists x)(\forall x)G(x,y)
(∀y)(∀x)G(x,y)⟹(∃x)(∀x)G(x,y);
(
∃
y
)
(
∀
x
)
G
(
x
,
y
)
⟹
(
∀
x
)
(
∃
y
)
G
(
x
,
y
)
(\exists y)(\forall x)G(x,y)\implies (\forall x)(\exists y)G(x,y)
(∃y)(∀x)G(x,y)⟹(∀x)(∃y)G(x,y);
(
∀
x
)
(
∃
y
)
G
(
x
,
y
)
⟹
(
∃
y
)
(
∃
x
)
G
(
x
,
y
)
(\forall x)(\exists y)G(x,y)\implies (\exists y)(\exists x)G(x,y)
(∀x)(∃y)G(x,y)⟹(∃y)(∃x)G(x,y);
(
∀
y
)
(
∃
y
)
G
(
x
,
y
)
⟹
(
∃
x
)
(
∃
y
)
G
(
x
,
y
)
(\forall y)(\exists y)G(x,y)\implies (\exists x)(\exists y)G(x,y)
(∀y)(∃y)G(x,y)⟹(∃x)(∃y)G(x,y).
规则 US(全称特指):
(
∀
x
)
G
(
x
)
⟹
G
(
y
)
(\forall x)G(x)\implies G(y)
(∀x)G(x)⟹G(y),
y
y
y 为自由变元.
规则 ES(存在特指):
(
∃
x
)
G
(
x
)
⟹
G
(
c
)
(\exists x)G(x)\implies G(c)
(∃x)G(x)⟹G(c),
c
c
c 为使
G
(
c
)
G(c)
G(c) 有效的个体常量.
规则 UG(全称推广):
G
(
y
)
⟹
(
∀
x
)
G
(
x
)
G(y)\implies(\forall x)G(x)
G(y)⟹(∀x)G(x),
G
(
y
)
G(y)
G(y) 中无自由变元
x
x
x.
规则 EG(存在推广):
G
(
c
)
⟹
(
∃
x
)
G
(
x
)
G(c)\implies(\exists x)G(x)
G(c)⟹(∃x)G(x),
c
c
c 为特定个体常量.
存在性证明: 构造性; 归谬法.
唯一性证明: (隐含存在性) 即
(
∃
x
)
(
P
(
x
)
∧
(
∀
y
)
(
y
≠
x
→
¬
P
(
y
)
)
)
(\exists x)(P(x)\wedge (\forall y)(y\ne x\to \neg P(y)))
(∃x)(P(x)∧(∀y)(y=x→¬P(y))).
数学归纳法:
(
∃
n
0
)
P
(
n
0
)
∧
(
∀
n
)
(
(
n
=
k
)
∧
P
(
k
)
→
P
(
k
+
1
)
)
⟹
(
∀
n
)
P
(
n
)
(\exists n_0)P(n_0)\wedge(\forall n)((n=k)\wedge P(k)\to P(k+1))\implies(\forall n)P(n)
(∃n0)P(n0)∧(∀n)((n=k)∧P(k)→P(k+1))⟹(∀n)P(n).
强形式:
(
∃
n
0
)
(
P
(
n
0
)
∧
P
(
n
0
+
1
)
)
∧
(
∀
n
)
(
(
n
≤
k
)
∧
P
(
n
)
→
P
(
k
+
1
)
)
⟹
(
∀
n
)
P
(
n
)
(\exists n_0)(P(n_0)\wedge P(n_0+1))\wedge(\forall n)((n\leq k)\wedge P(n)\to P(k+1))\implies(\forall n)P(n)
(∃n0)(P(n0)∧P(n0+1))∧(∀n)((n≤k)∧P(n)→P(k+1))⟹(∀n)P(n).
集合与关系
略去细节, 有朴素 ZFC 公理集合论.
外延:
(
∀
x
∈
X
)
x
∈
Y
,
(
∀
y
∈
Y
)
y
∈
X
⟹
X
=
Y
(\forall x\in X)x\in Y, (\forall y\in Y) y\in X\implies X=Y
(∀x∈X)x∈Y,(∀y∈Y)y∈X⟹X=Y; 由此有空集
∅
:
=
{
u
∈
X
:
u
≠
u
}
\emptyset:=\{u\in X:u\ne u\}
∅:={u∈X:u=u}.
配对:
(
∀
x
,
y
)
(
∃
C
)
(
(
x
,
y
∈
C
)
∧
(
∀
z
≠
x
,
y
→
z
∉
C
)
)
(\forall x,y)(\exists C)((x,y\in C)\wedge(\forall z\ne x,y\to z\notin\ C))
(∀x,y)(∃C)((x,y∈C)∧(∀z=x,y→z∈/ C)); Cartesian 积的前提.
分离:
(
∀
u
∈
X
)
P
(
u
)
⟹
∃
Y
=
{
u
∈
X
:
P
(
u
)
}
(\forall u\in X)P(u)\implies \exists Y=\{u\in X:P(u)\}
(∀u∈X)P(u)⟹∃Y={u∈X:P(u)}.
并集:
(
∀
X
)
∃
⋃
X
:
=
{
u
:
∃
v
∈
X
→
u
∈
v
}
(\forall X)\exists\bigcup X:=\{u:\exists v\in X\to u\in v\}
(∀X)∃⋃X:={u:∃v∈X→u∈v}.
幂集:
(
∀
x
)
∃
P
(
x
)
:
=
{
u
:
u
⊂
X
}
(\forall x)\exists P(x):=\{u:u\subset X\}
(∀x)∃P(x):={u:u⊂X}.
无穷:
(
∃
x
)
(
(
∅
∈
X
)
∧
(
(
∀
y
∈
x
)
y
∪
{
y
}
∈
x
)
)
(\exists x)((\emptyset\in X)\wedge((\forall y\in x)y\cup\{y\}\in x))
(∃x)((∅∈X)∧((∀y∈x)y∪{y}∈x)); 此时
X
X
X 为归纳集.
替换:
(
∀
X
)
∃
F
(
X
)
=
{
F
(
x
)
:
x
∈
X
}
(\forall X)\exists F(X)=\{F(x):x\in X\}
(∀X)∃F(X)={F(x):x∈X}; 函数的前提.
正则:
(
∀
Y
≠
∅
)
(
∃
X
∈
Y
)
(
∀
Z
∈
Y
)
X
∈
Z
(\forall Y\ne\emptyset)(\exists X\in Y)(\forall Z\in Y)X\in Z
(∀Y=∅)(∃X∈Y)(∀Z∈Y)X∈Z; 由此可构建叠垒谱系.
选择:
(
∀
x
∈
X
)
x
≠
∅
⟹
(
∃
g
)
(
(
g
:
X
→
⋃
X
)
∧
(
∀
y
∈
X
)
g
(
y
)
∈
X
)
(\forall x\in X)x\ne\emptyset\implies(\exists g)((g:X\to\bigcup X)\wedge (\forall y\in X)g(y)\in X)
(∀x∈X)x=∅⟹(∃g)((g:X→⋃X)∧(∀y∈X)g(y)∈X); 其中
g
g
g 为选择函数; 与良序定理/Zorn 引理等价.
Cartesian 积:
A
×
B
:
=
{
<
x
,
y
>
∣
x
∈
A
∧
y
∈
B
}
A\times B:=\{<x,y>|x\in A\wedge y\in B\}
A×B:={<x,y>∣x∈A∧y∈B}; 无交换律, 无结合律, 无零因子, 对
∩
\cap
∩ 和
∪
\cup
∪ 有左右分配律; 记
(
A
×
B
)
−
1
=
B
×
A
(A\times B)^{-1}=B\times A
(A×B)−1=B×A.
关系:
R
⊂
∈
X
1
×
X
2
×
.
.
.
×
X
n
R\subset\in X_1\times X_2\times...\times X_n
R⊂∈X1×X2×...×Xn; 二元时有
x
R
y
xRy
xRy 即序偶
(
x
,
y
)
∈
R
⊂
A
×
B
(x,y)\in R\subset A\times B
(x,y)∈R⊂A×B,
A
A
A 为前域,
B
B
B 为后域,
{
x
∣
x
∈
A
,
∃
y
∈
B
,
<
x
,
y
>
∈
R
}
\{x|x\in A,\exists y\in B,<x,y>\in R\}
{x∣x∈A,∃y∈B,<x,y>∈R} 为定义域, 类似有值域, 域为定义域和值域的并; 和集合有类似的运算与定义.
关系矩阵表示法: Bool 矩阵;
A
∧
B
A\wedge B
A∧B 即交,
A
∨
B
A\vee B
A∨B 即并,
A
⊙
B
A\odot B
A⊙B 即 Bool 矩阵乘法.
合成关系:
R
∘
S
=
{
<
x
,
z
>
∣
x
∈
A
∧
z
∈
C
∧
(
∃
y
)
(
y
∈
B
∧
x
R
y
∧
y
S
z
)
}
R\circ S=\{<x,z>|x\in A\wedge z\in C\wedge (\exists y)(y\in B\wedge xRy\wedge ySz)\}
R∘S={<x,z>∣x∈A∧z∈C∧(∃y)(y∈B∧xRy∧ySz)}; 和映射有类似的运算与定义.
自反性:
(
∀
x
∈
A
)
<
x
,
x
>
∈
R
⟺
(\forall x\in A)<x,x>\in R\iff
(∀x∈A)<x,x>∈R⟺ 关系图中每个结点有环
⟺
\iff
⟺ 关系矩阵主对角线均为
1
⟺
I
A
⊂
R
1\iff I_A\subset R
1⟺IA⊂R.
反自反性:
(
∀
x
∈
A
)
<
x
,
x
>
∉
R
⟺
(\forall x\in A)<x,x>\not\in R\iff
(∀x∈A)<x,x>∈R⟺ 关系图中每个结点无环
⟺
\iff
⟺ 关系矩阵主对角线均为
0
⟺
R
∩
I
A
=
∅
0\iff R\cap I_A=\emptyset
0⟺R∩IA=∅.
对称性:
(
∀
x
,
y
∈
A
)
(
<
x
,
y
>
∈
R
→
<
y
,
x
>
∈
R
)
⟺
(\forall x,y\in A)(<x,y>\in R\to <y,x>\in R)\iff
(∀x,y∈A)(<x,y>∈R→<y,x>∈R)⟺ 关系图中结点间总存在方向相反的两边或不存在边
⟺
\iff
⟺ 关系矩阵对称
⟺
R
=
R
−
1
\iff R=R^{-1}
⟺R=R−1.
反对称性:
(
∀
x
,
y
∈
A
)
(
<
x
,
y
>
∈
R
→
<
y
,
x
>
∉
R
)
⟺
(\forall x,y\in A)(<x,y>\in R\to <y,x>\not\in R)\iff
(∀x,y∈A)(<x,y>∈R→<y,x>∈R)⟺ 关系图中结点间至多存在一边
⟺
R
∩
R
−
1
⊂
I
A
\iff R\cap R^{-1}\subset I_A
⟺R∩R−1⊂IA.
传递性:
(
∀
x
,
y
,
z
∈
A
)
(
<
x
,
y
>
∈
R
,
<
y
,
z
>
∈
R
→
<
x
,
z
>
∈
R
)
⟺
R
∘
R
⊂
R
(\forall x,y,z\in A)(<x,y>\in R,<y,z>\in R\to <x,z>\in R)\iff R\circ R\subset R
(∀x,y,z∈A)(<x,y>∈R,<y,z>∈R→<x,z>∈R)⟺R∘R⊂R.
性质的保守性:
R
,
S
R,S
R,S 自反
⟹
\implies
⟹
R
−
1
,
R
∪
S
,
R
∩
S
,
R
∘
S
R^{-1},R\cup S,R\cap S,R\circ S
R−1,R∪S,R∩S,R∘S 自反;
R
,
S
R,S
R,S 反自反
⟹
\implies
⟹
R
−
1
,
R
∪
S
,
R
∩
S
R^{-1},R\cup S,R\cap S
R−1,R∪S,R∩S 反自反;
R
,
S
R,S
R,S 对称,
R
−
1
,
R
∪
S
,
R
∩
S
R^{-1},R\cup S,R\cap S
R−1,R∪S,R∩S 对称.
性质的闭包:
A
≠
∅
A\ne\emptyset
A=∅ 上 关系
R
⊂
R
′
R\subset R'
R⊂R′,
R
′
R'
R′ 是自反/对称/传递的,
∀
\forall
∀ 自反/对称/传递
R
′
′
R''
R′′ 均有
R
′
⊂
R
′
′
R'\subset R''
R′⊂R′′, 分别记为
r
(
R
)
/
s
(
R
)
/
t
(
R
)
r(R)/s(R)/t(R)
r(R)/s(R)/t(R); 即增加元素后满足性质的最小集合;
r
(
R
)
=
R
∪
I
A
r(R)=R\cup I_A
r(R)=R∪IA,
s
(
R
)
=
R
∪
R
−
1
s(R)=R\cup R^{-1}
s(R)=R∪R−1,
t
(
R
)
=
⋃
i
=
1
n
R
i
t(R)=\bigcup_{i=1}^n R^i
t(R)=⋃i=1nRi.
集合与关系性质列举如下:
A × B = ∅ ↔ A = ∅ ∨ B = ∅ A\times B=\emptyset\leftrightarrow A=\emptyset\vee B=\emptyset A×B=∅↔A=∅∨B=∅.
A × ( B ∪ C ) = ( A × B ) ∪ ( A × C ) A\times (B\cup C)=(A\times B)\cup(A\times C) A×(B∪C)=(A×B)∪(A×C).
( B ∪ C ) × A = ( B × A ) ∪ ( C × A ) (B\cup C)\times A=(B\times A)\cup(C\times A) (B∪C)×A=(B×A)∪(C×A).
A × ( B ∩ C ) = ( A × B ) ∩ ( A × C ) A\times (B\cap C)=(A\times B)\cap(A\times C) A×(B∩C)=(A×B)∩(A×C).
( B ∩ C ) × A = ( B × A ) ∩ ( C × A ) (B\cap C)\times A=(B\times A)\cap(C\times A) (B∩C)×A=(B×A)∩(C×A).
( ∀ A , B , C , D ≠ ∅ ) A × B ⊂ C × D ⟺ A ⊂ C ∧ B ⊂ D (\forall A,B,C,D\ne\emptyset)A\times B\subset C\times D\iff A\subset C\wedge B\subset D (∀A,B,C,D=∅)A×B⊂C×D⟺A⊂C∧B⊂D.
∣ A i ∣ = m i ⟹ ∣ A 1 × A 2 × . . . × A n ∣ = ∏ i = 1 n m i |A_i|=m_i\implies|A_1\times A_2\times...\times A_n|=\prod_{i=1}^n m_i ∣Ai∣=mi⟹∣A1×A2×...×An∣=∏i=1nmi.
∣ A ∣ = n |A|=n ∣A∣=n, ∣ B ∣ = m |B|=m ∣B∣=m 上 R ⟹ ∣ R ∣ ≤ 2 n m R\implies |R|\leq 2^{nm} R⟹∣R∣≤2nm.
∅ ∘ R = R ∘ ∅ = ∅ \emptyset\circ R=R\circ\emptyset=\emptyset ∅∘R=R∘∅=∅.
( R ∘ S ) ∘ T = R ∘ ( S ∘ T ) (R\circ S)\circ T=R\circ(S\circ T) (R∘S)∘T=R∘(S∘T).
I A ∘ R = R ∘ I B = R I_A\circ R=R\circ I_B=R IA∘R=R∘IB=R.
R ∘ ( S 1 ∪ S 2 ) = ( R ∘ S 1 ) ∪ ( R ∘ S 2 ) R\circ(S_1\cup S_2)=(R\circ S_1)\cup(R\circ S_2) R∘(S1∪S2)=(R∘S1)∪(R∘S2).
( S 1 ∪ S 2 ) ∘ T = ( S 1 ∘ T ) ∪ ( S 1 ∘ T ) (S_1\cup S_2)\circ T=(S_1\circ T)\cup(S_1\circ T) (S1∪S2)∘T=(S1∘T)∪(S1∘T).
R ∘ ( S 1 ∩ S 2 ) ⊂ ( R ∘ S 1 ) ∩ ( R ∘ S 2 ) R\circ(S_1\cap S_2)\subset(R\circ S_1)\cap(R\circ S_2) R∘(S1∩S2)⊂(R∘S1)∩(R∘S2).
( S 1 ∩ S 2 ) ∘ T ⊂ ( S 1 ∘ T ) ∩ ( S 1 ∘ T ) (S_1\cap S_2)\circ T\subset(S_1\circ T)\cap(S_1\circ T) (S1∩S2)∘T⊂(S1∘T)∩(S1∘T).
( R ∘ S ) − 1 = S − 1 ∘ R − 1 (R\circ S)^{-1}=S^{-1}\circ R^{-1} (R∘S)−1=S−1∘R−1.
( R ∪ S ) − 1 = R − 1 ∪ S − 1 (R\cup S)^{-1}=R^{-1}\cup S^{-1} (R∪S)−1=R−1∪S−1.
( R ∩ S ) − 1 = R − 1 ∩ S − 1 (R\cap S)^{-1}=R^{-1}\cap S^{-1} (R∩S)−1=R−1∩S−1.
( R − S ) − 1 = R − 1 − S − 1 (R-S)^{-1}=R^{-1}-S^{-1} (R−S)−1=R−1−S−1.
( R ‾ ) − 1 = R − 1 ‾ (\overline{R})^{-1}=\overline{R^{-1}} (R)−1=R−1.
( A × B ) − 1 = B × A (A\times B)^{-1}=B\times A (A×B)−1=B×A.
S ⊂ R ⟺ S − 1 ⊂ R − 1 S\subset R\iff S^{-1}\subset R^{-1} S⊂R⟺S−1⊂R−1.
R 0 = I A R^0=I_A R0=IA.
R 1 = R R^1=R R1=R.
R n + 1 = R n ∘ R = R ∘ R n R^{n+1}=R^n\circ R=R\circ R^n Rn+1=Rn∘R=R∘Rn.
R m ∘ R n = R n ∘ R m = R n + m R^m\circ R^n=R^n\circ R^m=R^{n+m} Rm∘Rn=Rn∘Rm=Rn+m.
( R m ) n = R m n (R^m)^n=R^{mn} (Rm)n=Rmn.
∣ A ∣ = n |A|=n ∣A∣=n 上 R ⟹ ⋃ i = 1 ∞ R i = ⋃ i = 1 n R\implies \bigcup_{i=1}^\infty R^i=\bigcup_{i=1}^n R⟹⋃i=1∞Ri=⋃i=1n.
等价: 自反, 对称, 传递的关系; 记
∼
\sim
∼.
等价类:
X
≠
∅
X\ne\emptyset
X=∅ 上
∼
\sim
∼ 有
x
∈
X
x\in X
x∈X,
[
x
]
:
=
{
y
∈
X
∣
y
∼
x
}
[x]:=\{y\in X|y\sim x\}
[x]:={y∈X∣y∼x}.
商集: 全体等价类, 即
X
/
∼
:
=
{
[
x
]
∣
x
∈
X
}
X/\sim:=\{[x]|x\in X\}
X/∼:={[x]∣x∈X}.
划分: 由等价类得到的无交并分解,
X
=
⨆
[
x
]
∈
X
/
∼
[
x
]
X=\bigsqcup_{[x]\in X/\sim}[x]
X=⨆[x]∈X/∼[x].
偏序: 自反, 反对称, 传递的关系; 记
≤
\leq
≤; 有 Hasse 图.
极大元
∀
x
≥
b
⟹
x
=
b
\forall x\geq b\implies x=b
∀x≥b⟹x=b, 极小元, 最大元(唯一极大元), 最小元(唯一极小元), 上界, 下界, 上确界(最小上界
sup
\sup
sup), 下确界(最大下界
⊂
\sub
⊂).
全序/线序/链: 偏序集
(
∀
x
,
y
∈
P
)
x
≤
y
∨
y
≤
x
(\forall x,y\in P)x\leq y\vee y\leq x
(∀x,y∈P)x≤y∨y≤x.
良序: 全序集
P
P
P 的非空子集均有极小元.
序数: 传递集
α
⊂
P
(
α
)
\alpha\subset P(\alpha)
α⊂P(α) 对
∈
\in
∈ 为良序.
超穷归纳: 数学归纳在最小非零极限序数 (
α
=
sup
{
β
∣
β
<
α
}
\alpha=\sup\{\beta|\beta<\alpha\}
α=sup{β∣β<α})
ω
\omega
ω 上; 有序类上类似.
良序定理: 任意集合可被赋予良序.
Zorn 引理: 偏序集
P
≠
∅
P\ne\emptyset
P=∅ 所有链均有上界
⟹
P
\implies P
⟹P 有极大元.
映射:
f
:
A
→
B
f:A\to B
f:A→B, 原像
∀
x
∈
A
\forall x\in A
∀x∈A, 像
∃
!
y
∈
B
\exists !y\in B
∃!y∈B,
<
x
,
y
>
∈
f
<x,y>\in f
<x,y>∈f; 定义域
d
o
m
f
=
A
{\rm dom}f=A
domf=A, 值域
r
a
n
f
=
f
(
A
)
{\rm ran}f=f(A)
ranf=f(A), 陪域
c
o
d
f
=
b
{\rm cod}f=b
codf=b.
单射:
(
∀
x
1
,
x
2
∈
A
)
(
x
1
≠
x
2
⟹
f
(
x
1
)
≠
f
(
x
2
)
)
(\forall x_1,x_2\in A)(x_1\ne x_2\implies f(x_1)\ne f(x_2))
(∀x1,x2∈A)(x1=x2⟹f(x1)=f(x2)).
满射:
(
∀
x
∈
B
)
(
∃
x
∈
A
)
f
(
x
)
=
y
(\forall x\in B)(\exists x\in A)f(x)=y
(∀x∈B)(∃x∈A)f(x)=y.
双射: 既单又满.
变换: 双射时
A
=
B
A=B
A=B.
常见映射: 恒等映射, 常值映射, 特征映射, Bool映射, 恒等变换.
注: 此处采用常见形式, 教材上 f ∘ g = g ( f ( x ) ) f\circ g=g(f(x)) f∘g=g(f(x)) 是不常见的形式但与前面关系复合定义保持一致, 但更应写成 x ( f ∘ g ) y x(f\circ g)y x(f∘g)y 的形式来消除歧义, 下同.
复合映射:
(
g
∘
f
)
(
x
)
=
g
(
f
(
x
)
)
(g\circ f)(x)=g(f(x))
(g∘f)(x)=g(f(x)).
g
∘
f
g\circ f
g∘f 是满射
⟹
g
\implies g
⟹g 是满射;
g
∘
f
g\circ f
g∘f 是单射
⟹
f
\implies f
⟹f 是单射.
逆映射:
f
∘
f
−
1
=
I
B
f\circ f^{-1}=I_B
f∘f−1=IB,
f
−
1
∘
f
=
I
A
f^{-1}\circ f=I_A
f−1∘f=IA,
f
∘
I
A
=
f
f\circ I_A=f
f∘IA=f,
I
B
∘
f
=
f
I_B\circ f=f
IB∘f=f.
f
f
f 是双射
⟺
f
−
1
\iff f^{-1}
⟺f−1 存在, 此时
f
−
1
f^{-1}
f−1 也为双射.
等势:
X
,
Y
X,Y
X,Y 间有双射, 记
∣
X
∣
=
∣
Y
∣
|X|=|Y|
∣X∣=∣Y∣, 其中
∣
X
∣
|X|
∣X∣ 为等势类; 等价关系.
f
:
X
→
y
f:X\to y
f:X→y 为单射, 记
∣
X
∣
≤
∣
Y
∣
|X|\leq |Y|
∣X∣≤∣Y∣;
∣
X
∣
≤
∣
Y
∣
,
∣
Y
∣
≤
∣
X
∣
⟹
∣
X
∣
=
∣
Y
∣
|X|\leq|Y|,|Y|\leq|X|\implies|X|=|Y|
∣X∣≤∣Y∣,∣Y∣≤∣X∣⟹∣X∣=∣Y∣.
∣
X
∣
=
n
⟹
∣
P
(
X
)
∣
=
2
n
|X|=n\implies |P(X)|=2^n
∣X∣=n⟹∣P(X)∣=2n.
可数集:
∣
X
∣
=
ω
=
∣
N
∣
=
∣
Z
∣
=
∣
Q
∣
|X|=\omega=|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|
∣X∣=ω=∣N∣=∣Z∣=∣Q∣.
代数结构
有限群: 非空有限集
G
G
G 上代数运算满足结合律, 存在单位元(记
e
e
e), 逆元(记
a
−
1
a^{-1}
a−1);
记
∣
G
∣
=
C
a
r
d
(
G
)
|G|={\rm Card}(G)
∣G∣=Card(G) 为阶; 定义
a
−
n
=
(
a
−
1
)
n
a^{-n}=(a^{-1})^n
a−n=(a−1)n,
a
0
=
e
a^0=e
a0=e.
半群: 只满足结合律.
幺半群: 存在单位元的半群.
交换半群: 满足交换律的半群.
交换幺半群: 存在单位元满足交换律的半群.
Abel群: 满足交换律的群.
消去律: 可由结合律和逆元推得.
元素的阶:
∣
a
∣
=
inf
{
n
∈
N
_
+
∣
a
n
=
e
}
|a|=\inf \{n\in\mathbb{N}\_+\ |\ a^n = e\}
∣a∣=inf{n∈N_+ ∣ an=e} 或
∞
\infty
∞;
∣
a
−
1
∣
=
∣
a
∣
|a^{-1}|=|a|
∣a−1∣=∣a∣,
∣
a
d
∣
=
∣
a
∣
g
c
d
(
∣
a
∣
,
d
)
|a^d|=\frac{|a|}{{\rm gcd}(|a|,d)}
∣ad∣=gcd(∣a∣,d)∣a∣; 若
n
∈
Z
n\in\mathbb{Z}
n∈Z,
a
n
=
e
a^n=e
an=e 则
∣
a
∣
∣
n
|a||n
∣a∣∣n.
子群: 群
G
G
G 的非空子集
H
H
H 关于
G
G
G 的代数运算构成群, 记
H
<
G
H<G
H<G; 真子群即非平凡子群({e},G);
H
<
G
H<G
H<G 则
e
∈
H
e\in H
e∈H,
e
∈
G
e\in G
e∈G, 且
∀
a
∈
H
\forall a\in H
∀a∈H,
a
−
1
∈
G
a^{-1}\in G
a−1∈G;
H
<
G
⟺
∀
a
,
b
∈
H
H<G \iff \forall a,b\in H
H<G⟺∀a,b∈H,
a
b
−
1
∈
H
ab^{-1}\in H
ab−1∈H.
循环群: 群
G
G
G 的非空子集
S
S
S, 生成子群
⟨
S
⟩
=
⋂
S
⊂
H
<
G
H
=
{
∏
a
i
l
i
∣
a
i
∈
S
,
l
i
=
±
1
}
\langle S\rangle=\bigcap_{S\subset H<G}H=\{\prod a_i^{l_i}\ |\ a_i\in S, l_i=\pm 1\}
⟨S⟩=⋂S⊂H<GH={∏aili ∣ ai∈S,li=±1};
特别
S
=
{
a
}
S=\{a\}
S={a} 时, 循环子群
⟨
S
⟩
=
⟨
a
⟩
=
{
a
n
∣
n
∈
Z
}
\langle S\rangle=\langle a\rangle=\{a^n\ |\ n\in\mathbb{Z}\}
⟨S⟩=⟨a⟩={an ∣ n∈Z};
特别
G
=
⟨
a
⟩
G=\langle a\rangle
G=⟨a⟩ 时为循环群
⟺
∃
a
∈
G
\iff\exists a\in G
⟺∃a∈G s.t.
∣
a
∣
=
∣
G
∣
|a|=|G|
∣a∣=∣G∣;
循环群子群仍为循环群; 无限循环群同构于
Z
\mathbb{Z}
Z,
n
n
n 阶循环群同构于
Z
_
n
\mathbb{Z}\_n
Z_n.
陪集:
H
<
G
H<G
H<G,
∀
a
∈
G
\forall a\in G
∀a∈G,
a
H
aH
aH 为左陪集;
a
∈
G
a\in G
a∈G,
a
H
=
H
⟺
a
,
b
∈
G
aH=H\iff a,b\in G
aH=H⟺a,b∈G,
a
H
=
b
H
aH=bH
aH=bH 或
a
H
∩
b
H
=
∅
aH\cap bH=\empty
aH∩bH=∅,
∣
H
∣
=
∣
a
H
∣
|H|=|aH|
∣H∣=∣aH∣;
G
=
⨆
g
∈
G
g
H
G=\bigsqcup_{g\in G}gH
G=⨆g∈GgH.
Lagrange: 记
[
G
:
H
]
=
∣
G
∣
∣
H
∣
[G:H]=\frac{|G|}{|H|}
[G:H]=∣H∣∣G∣,
∣
G
∣
=
[
G
:
H
]
∣
H
∣
|G|=[G:H]|H|
∣G∣=[G:H]∣H∣;
∣
a
∣
∣
∣
G
∣
|a|||G|
∣a∣∣∣G∣.
正规子群:
H
<
G
H<G
H<G,
∀
a
∈
G
\forall a\in G
∀a∈G,
a
H
=
H
a
aH=Ha
aH=Ha, 记
H
⊲
G
H\lhd G
H⊲G;
H
<
G
H<G
H<G,
∀
a
∈
G
\forall a\in G
∀a∈G,
H
⊲
G
⟺
a
H
a
−
1
=
H
⟺
a
H
a
−
1
⊂
H
⟺
a
h
a
−
1
∈
H
H\lhd G \iff aHa^{-1}=H \iff aHa^{-1} \subset H \iff aha^{-1}\in H
H⊲G⟺aHa−1=H⟺aHa−1⊂H⟺aha−1∈H,
∀
h
∈
H
\forall h\in H
∀h∈H.
商群:
H
⊲
G
H\lhd G
H⊲G,
G
/
H
=
{
a
H
∣
a
∈
G
}
G/H=\{aH\ |\ a\in G\}
G/H={aH ∣ a∈G},
a
H
∗
b
H
=
(
a
b
)
H
aH\ast bH=(ab)H
aH∗bH=(ab)H.
同态: 保持代数运算不变的映射, 双射时为同构.
群同态: 群
G
1
,
G
2
G_1,G_2
G1,G2, 映射
f
:
G
1
→
G
2
f:G_1\to G_2
f:G1→G2,
f
(
a
b
)
=
f
(
a
)
f
(
b
)
f(ab)=f(a)f(b)
f(ab)=f(a)f(b),
∀
a
,
b
∈
G
1
\forall a,b\in G_1
∀a,b∈G1.
置换群: 非空集合
X
X
X 上所有可逆变换(双射)关于复合构成对称群
S
x
S_x
Sx;
S
x
S_x
Sx 子群称为变换群;
特别
∣
X
∣
=
n
|X|=n
∣X∣=n 时, 记
S
x
=
S
n
S_x = S_n
Sx=Sn,
S
n
S_n
Sn及其子群称为置换群, 元素
σ
\sigma
σ 称为置换;
∣
S
n
∣
=
n
!
|S_n|=n!
∣Sn∣=n!.
轮换:
f
∈
S
n
f\in S_n
f∈Sn,
i
1
,
.
.
.
,
i
r
∈
X
i_1,...,i_r\in X
i1,...,ir∈X,
f
(
i
1
)
=
i
2
,
.
.
.
,
f
(
i
r
−
1
)
=
i
r
,
f
(
i
r
)
=
i
1
f(i_1)=i_2,...,f(i_{r-1})=i_r,f(i_r)=i_1
f(i1)=i2,...,f(ir−1)=ir,f(ir)=i1 且保持其他元素不变时,
f
=
(
i
1
,
i
2
,
.
.
.
,
i
r
)
f=(i_1,i_2,...,i_r)
f=(i1,i2,...,ir) 称为
r
r
r -轮换;
特别
r
=
1
r=1
r=1 时为恒等变换,
r
=
2
r=2
r=2 时称为对换;
任意置换可唯一表示为不相交的轮换之积; 任意轮换可以表示为对换之积.
Cayley: 任意有限群同构于一置换群.
环: 非空集合
R
R
R 上两个代数运算
(
+
,
⋅
)
(+,\cdot)
(+,⋅),
(
R
,
+
)
(R,+)
(R,+) 为Abel群,
(
R
,
⋅
)
(R,\cdot)
(R,⋅) 为半群,
⋅
\cdot
⋅ 对
+
+
+ 有双边分配律;
为区别,
+
+
+ 的单位元称为零元(记
0
0
0), 逆元称为负元(记
−
a
-a
−a).
单位:
a
∈
R
a\in R
a∈R,
∃
b
∈
R
\exists b\in R
∃b∈R s.t.
a
b
=
b
a
=
e
ab=ba=e
ab=ba=e, 则称
a
a
a 为单位; 环中所有单位构成单位群, 记
U
(
R
)
U(R)
U(R);
U
(
Z
_
m
)
=
Z
m
∗
U(\mathbb{Z}\_m)=\mathbb{Z}_m^*
U(Z_m)=Zm∗.
零因子: 非零元
a
,
b
∈
R
a,b\in R
a,b∈R s.t.
a
b
=
0
ab=0
ab=0,
a
a
a 为
b
b
b 的左零因子.
交换环:
(
R
,
⋅
)
(R,\cdot)
(R,⋅) 为交换半群.
交换幺环:
(
R
,
⋅
)
(R,\cdot)
(R,⋅) 为交换幺半群.
无零因子环:
(
R
,
⋅
)
(R,\cdot)
(R,⋅) 为无零因子半群.
整环:
(
R
,
⋅
)
(R,\cdot)
(R,⋅) 为无零因子交换幺半群.
域:
(
R
−
{
0
}
,
⋅
)
(R-\{0\},\cdot)
(R−{0},⋅) 为Abel群.
双边理想: 非空集合
I
⊂
R
I\subset R
I⊂R,
I
I
I 对
+
+
+ 封闭, 对
⋅
\cdot
⋅ 吸收, 即
∀
s
∈
R
\forall s\in R
∀s∈R,
s
I
⊂
I
sI\subset I
sI⊂I,
I
s
⊂
I
Is\subset I
Is⊂I, 记
I
⊲
R
I \lhd R
I⊲R;
d
Z
⊲
Z
d\mathbb{Z}\lhd\mathbb{Z}
dZ⊲Z.
商环:
I
⊲
R
I\lhd R
I⊲R,
R
/
I
<
R
R/I < R
R/I<R;
R
/
I
=
{
a
+
I
∣
a
∈
R
}
R/I=\{a+I\ | \ a\in R\}
R/I={a+I ∣ a∈R}.
(
a
+
I
)
+
(
b
+
I
)
=
(
a
+
b
)
+
I
(a+I)+(b+I)=(a+b)+I
(a+I)+(b+I)=(a+b)+I,
(
a
+
I
)
(
b
+
I
)
=
(
a
b
)
+
I
(a+I)(b+I)=(ab)+I
(a+I)(b+I)=(ab)+I.
生成理想: 非空集合
S
⊂
R
S\subset R
S⊂R, 包含
S
S
S 的所有理想的交集;
特别
S
=
{
a
}
S=\{a\}
S={a} 时, 记
⟨
S
⟩
=
⟨
a
⟩
\langle S\rangle=\langle a\rangle
⟨S⟩=⟨a⟩ 为
a
a
a 生成的主理想;
特别
R
R
R 为交换幺环时, 主理想
⟨
a
⟩
=
{
r
a
∣
r
∈
R
}
\langle a\rangle=\{ra\ | \ r\in R\}
⟨a⟩={ra ∣ r∈R};
Z
\mathbb{Z}
Z 的所有理想均为主理想.
素理想: 交换幺环
R
R
R, 非平凡
P
⊲
R
P\lhd R
P⊲R, 若
a
b
∈
P
ab\in P
ab∈P, 有
a
∈
P
a\in P
a∈P 或
b
∈
P
b\in P
b∈P; 特别整环中, 素元
p
p
p,
⟨
p
⟩
\langle p\rangle
⟨p⟩ 为素理想.
交换幺环
R
R
R,
P
⊲
R
P\lhd R
P⊲R,
R
/
P
R/P
R/P 为整环
⟺
P
\iff P
⟺P 为素理想.
极大理想: 交换幺环
R
R
R, 非平凡
M
⊲
R
M\lhd R
M⊲R, 无真包含
M
M
M 的非平凡理想.
交换幺环
R
R
R,
M
⊲
R
M\lhd R
M⊲R,
R
/
M
R/M
R/M 为域
⟺
M
\iff M
⟺M 为极大理想.
极大理想一定为素理想, 反之不然.
Euclid整环(ED): 满足Euclid性的整环,
∀
a
,
b
∈
R
−
{
0
}
\forall a,b\in R-\{0\}
∀a,b∈R−{0}, 有映射
ε
:
R
−
{
0
}
→
Z
+
\varepsilon: R-\{0\}\to \mathbb{Z}_+
ε:R−{0}→Z+ s.t.
ε
(
a
)
≤
ε
(
a
b
)
\varepsilon(a)\leq\varepsilon(ab)
ε(a)≤ε(ab),
∃
r
,
q
∈
R
\exists r,q\in R
∃r,q∈R s.t.
a
=
b
q
+
r
a=bq+r
a=bq+r,
ε
(
r
)
<
ε
(
b
)
\varepsilon(r)<\varepsilon(b)
ε(r)<ε(b) 或
r
=
0
r=0
r=0; 其上有最大公因数.
主理想整环(PID): 理想均为主理想的整环; 其上素元和不可约元等价, 素理想和极大理想等价; 素元为非零元非单位
p
p
p s.t.
a
,
b
∈
R
a,b\in R
a,b∈R, 若
p
∣
a
b
p|ab
p∣ab, 有
p
∣
a
p|a
p∣a 或
p
∣
b
p|b
p∣b; 不可约元为非零元非单位
q
q
q s.t.
a
,
b
∈
R
a,b\in R
a,b∈R, 若
q
=
a
b
q=ab
q=ab, 有
a
a
a 或
b
b
b 为单位.
唯一析因整环(UFD): 整环
R
R
R 中非零元非单位的元素可以唯一表示为有限个不可约元的积.
定理: 所有域都是ED; 所有ED都是PID; 所有PID都是UFD.
特征:
c
h
a
r
(
R
)
=
inf
{
n
∈
Z
+
∣
n
a
=
a
,
∀
a
∈
R
}
{\rm char}(R)=\inf\{n\in\mathbb{Z}_+\ | \ na=a,\forall a\in R\}
char(R)=inf{n∈Z+ ∣ na=a,∀a∈R} 或0;
c
h
a
r
(
Z
)
=
0
{\rm char}(\mathbb{Z})=0
char(Z)=0,
c
h
a
r
(
Z
_
m
)
=
m
{\rm char}(\mathbb{Z}\_m)=m
char(Z_m)=m;
整环特征必为0或素数, 非空有限域特征必为素数,
c
h
a
r
(
F
p
)
=
p
{\rm char}(F_p)=p
char(Fp)=p;
∀
a
,
b
∈
F
p
\forall a,b\in F_p
∀a,b∈Fp,
(
a
+
b
)
p
=
a
p
+
b
p
(a+b)^p=a^p+b^p
(a+b)p=ap+bp.
有限域结构:
∀
\forall
∀ 素数
p
p
p,
n
∈
Z
_
+
n\in\mathbb{Z}\_+
n∈Z_+, 存在同构意义下唯一的有限域
F
p
n
F_{p^n}
Fpn s.t.
∣
F
p
n
∣
=
p
n
|F_{p^n}|=p^n
∣Fpn∣=pn,
c
h
a
r
(
F
p
n
)
=
p
{\rm char}(F_{p^n})=p
char(Fpn)=p.
此处采用常见记号, 与教材有所区别, 下同.
格: 偏序集
(
L
,
≤
)
(L,\leq)
(L,≤) 中
∀
a
,
b
∈
L
\forall a,b\in L
∀a,b∈L,
{
a
,
b
}
\{a,b\}
{a,b} 都有上确界和下确界, 记
a
+
b
=
sup
{
a
,
b
}
a+b=\sup\{a,b\}
a+b=sup{a,b},
a
b
=
inf
{
a
,
b
}
ab=\inf\{a,b\}
ab=inf{a,b}.
等价定义:
(
L
,
∧
,
∨
)
(L,\wedge,\vee)
(L,∧,∨) 中
∧
,
∨
\wedge,\vee
∧,∨ 满足交换律, 结合律, 吸收律
a
∧
(
a
∨
b
)
=
a
a\wedge (a\vee b)=a
a∧(a∨b)=a 和
a
∨
(
a
∧
b
)
=
a
a\vee(a\wedge b)=a
a∨(a∧b)=a.
性质: 自反性, 反对称性, 传递性, 交换律, 集合律, 吸收律, 幂等律, 保序性, 对偶律.
a
b
≤
a
,
b
ab\leq a,b
ab≤a,b;
a
,
b
≤
a
+
b
a,b\leq a+b
a,b≤a+b.
c
≤
a
,
b
⟹
c
≤
a
b
c\leq a,b\implies c\leq ab
c≤a,b⟹c≤ab;
a
,
b
≤
c
⟹
a
+
b
≤
c
a,b\leq c\implies a+b\leq c
a,b≤c⟹a+b≤c.
a
≤
b
⟺
a
b
=
a
⟺
a
+
b
=
b
a\leq b\iff ab=a\iff a+b=b
a≤b⟺ab=a⟺a+b=b.
a
≤
b
a\leq b
a≤b,
c
≤
d
⟹
a
c
≤
b
d
c\leq d\implies ac\leq bd
c≤d⟹ac≤bd,
a
+
c
≤
b
+
d
a+c\leq b+d
a+c≤b+d.
分配不等式:
a
+
(
b
c
)
≤
(
a
+
b
)
(
a
+
c
)
a+(bc)\leq (a+b)(a+c)
a+(bc)≤(a+b)(a+c);
a
(
b
+
c
)
≥
(
a
b
)
+
(
a
c
)
a(b+c)\geq(ab)+(ac)
a(b+c)≥(ab)+(ac).
模不等式:
a
≤
c
⟺
a
+
(
b
c
)
≤
(
a
+
b
)
c
a\leq c\iff a+(bc)\leq(a+b)c
a≤c⟺a+(bc)≤(a+b)c.
类似, 有子格及格同态; 格同态一定保序.
分配格: 满足分配律
⟺
\iff
⟺ 任意 5 元素子格同构于 Hasse 图中的后 3 个.
链分配格; 4元素以下一定为分配格.
分配格
∀
a
∈
L
\forall a\in L
∀a∈L,
x
,
y
∈
L
x,y\in L
x,y∈L 有
a
x
=
a
y
,
a
+
x
=
a
+
y
⟹
x
=
y
ax=ay,a+x=a+y\implies x=y
ax=ay,a+x=a+y⟹x=y.
模格 (Dedekind): 满足模律
a
≤
b
⟹
a
+
(
b
c
)
=
(
a
+
b
)
c
⟺
a\leq b\implies a+(bc)=(a+b)c \iff
a≤b⟹a+(bc)=(a+b)c⟺ 任意 5 元素子格不同构于 Hasse 图中的第 2 个; 分配格是模格.
有界格: 格有全上界和全下界, 分别记
1
1
1 和
0
0
0; 全上界全下界存在时必唯一.
补格: 有界格
∀
a
∈
L
\forall a\in L
∀a∈L, 有补元
a
′
a'
a′,
a
+
a
′
=
1
a+a'=1
a+a′=1,
a
a
′
=
0
aa'=0
aa′=0.
分配格中补元存在则必唯一.
补分配格性质: 对合律, 零律, 同一律, 反演律.
a
≤
b
⟺
b
′
≤
a
′
a\leq b\iff b'\leq a'
a≤b⟺b′≤a′;
a
≤
b
⟺
a
b
′
=
0
⟺
a
′
+
b
=
1
a\leq b\iff ab'=0\iff a'+b=1
a≤b⟺ab′=0⟺a′+b=1.
Bool 代数/格: 即补分配格.
Stone表示定理: 有限 Bool 代数总同构于势
2
n
2^n
2n 的集合域.
类似, 有 Bool 子代数, Bool 代数同态.
Bool 表达式
f
(
x
1
,
x
2
,
.
.
.
,
x
n
)
f(x_1,x_2,...,x_n)
f(x1,x2,...,xn), Bool 函数
f
:
B
→
B
′
f:\mathcal{B}\to\mathcal{B}'
f:B→B′, 极大项
∑
i
=
1
n
x
i
^
\sum_{i=1}^n\hat{x_i}
∑i=1nxi^, 极小项
∏
i
=
1
n
x
i
^
\prod_{i=1}^n\hat{x_i}
∏i=1nxi^, 主析取范式 (sum of product)
∑
i
=
1
m
∏
i
=
1
n
x
i
^
\sum_{i=1}^m\prod_{i=1}^n\hat{x_i}
∑i=1m∏i=1nxi^, 主合取范式 (product of sum)
∏
i
=
1
m
∑
i
=
1
n
x
i
^
\prod_{i=1}^m\sum_{i=1}^n\hat{x_i}
∏i=1m∑i=1nxi^.
图
环: 边的两个端点相同.
孤立结点: 不与任何结点相邻接.
零图: 仅由孤立结点组成.
平凡图: 只有一个结点的零图.
(
n
,
m
)
(n,m)
(n,m) 图/
n
n
n 阶图: 含有
n
n
n 个结点,
m
m
m 条边.
边集偶对是否有序: 无向图; 有向图; 混合图.
有无平行边(两结点间有无多条边; 重数): 多重图; 线图; 简单图(无环线图).
边是否有值: 无权图; 赋权图.
操作: 删除边
G
−
E
G-E
G−E; 删除结点
G
−
V
′
G-V'
G−V′; 添加边
G
∪
(
u
,
v
)
G\cup(u,v)
G∪(u,v); 收缩边(将删除边的两个结点用新结点代替)
G
\
e
G\backslash e
G\e.
子图(
V
′
⊂
V
V'\subset V
V′⊂V,
E
′
⊂
E
E'\subset E
E′⊂E): 真子图 (
V
′
≠
V
∨
E
′
≠
E
V'\ne V\vee E'\ne E
V′=V∨E′=E); 生成子图(
V
′
=
V
V'=V
V′=V,
E
′
⊂
E
E'\subset E
E′⊂E, 即
G
−
(
E
−
E
′
)
G-(E-E')
G−(E−E′)); 导出子图 (
∅
≠
V
′
⊂
V
\emptyset\ne V'\subset V
∅=V′⊂V,
∀
u
,
v
∈
V
′
\forall u,v\in V'
∀u,v∈V′,
(
u
&
v
∈
E
)
→
(
u
&
v
∈
E
′
)
(u\& v\in E)\to(u\& v\in E')
(u&v∈E)→(u&v∈E′), 即
G
−
(
V
−
V
′
)
G-(V-V')
G−(V−V′)).
完全图:
∀
u
,
v
∈
V
\forall u,v\in V
∀u,v∈V,
u
&
v
∈
E
u\& v\in E
u&v∈E; 记
K
=
⟨
V
,
E
⟩
K=\langle V, E\rangle
K=⟨V,E⟩.
补图 (无权):
H
=
⟨
V
,
E
−
E
′
⟩
H=\langle V,E-E' \rangle
H=⟨V,E−E′⟩;
G
=
⟨
V
,
E
⟩
G=\langle V,E \rangle
G=⟨V,E⟩ 为完全图,
G
′
=
⟨
V
,
E
′
⟩
G'=\langle V,E' \rangle
G′=⟨V,E′⟩ 为简单图; 即
a
i
j
‾
=
1
−
a
i
j
(
i
≠
j
)
;
0
(
i
=
j
)
\overline{a_ij}=1-a_ij\ (i\ne j)\ ;0\ (i=j)
aij=1−aij (i=j) ;0 (i=j).
度: 该结点的边数; 出度/入度; 最大/小(出/入)度;
d
e
g
(
v
i
+
)
=
∑
k
=
1
n
a
i
k
{\rm deg}(v_i^+)=\sum_{k=1}^na_{ik}
deg(vi+)=∑k=1naik,
d
e
g
(
v
i
)
=
∑
k
=
1
n
a
i
k
+
a
i
i
{\rm deg}(v_i)=\sum_{k=1}^na_{ik}+a_{ii}
deg(vi)=∑k=1naik+aii.
度数序列
(
d
e
g
(
v
1
)
,
.
.
.
,
d
e
g
v
n
)
({\rm deg}(v_1),...,{\rm deg}v_n)
(deg(v1),...,degvn).
悬挂结点: 度为
1
1
1 的结点. 悬挂边: 悬挂结点的边.
基本(握手)定理:
∑
v
∈
V
d
e
g
(
v
)
=
2
∣
E
∣
\sum_{v\in V}{\rm deg}(v)=2|E|
∑v∈Vdeg(v)=2∣E∣;
∑
v
∈
V
d
e
g
+
(
v
)
=
∑
v
∈
V
d
e
g
−
(
v
)
=
∣
E
∣
\sum_{v\in V}{\rm deg}^+(v)=\sum_{v\in V}{\rm deg}^-(v)=|E|
∑v∈Vdeg+(v)=∑v∈Vdeg−(v)=∣E∣; 奇度结点恰有偶数个.
同构: 结点数相同, 边数相同, 度数相同的节点数相同, 结点及边关系均一一对应.
通路 (无权):
v
1
&
v
2
&
.
.
.
&
v
k
v_1\& v_2\&...\& v_k
v1&v2&...&vk, 其中
v
i
&
v
j
=
1
v_i\& v_j=1
vi&vj=1,
k
k
k 为长度; 特别
v
i
=
v
k
v_i=v_k
vi=vk 时为回路.
简单通路 (迹): 通路中边互不相同; 特别有简单回路 (闭迹).
基本/初级通路 (路径): 通路中结点互不相同; 特别有基本/初级回路 (圈).
基本通路/回路一定是简单通路/回路, 反之不然.
通路定理: 邻接矩阵
A
n
×
n
A_{n\times n}
An×n,
A
m
A^m
Am 中
a
i
j
a_{ij}
aij 为
v
i
v_i
vi 到
v
j
v_j
vj 的通路数目.
可达:
v
i
v_i
vi 到
v
j
v_j
vj 存在通路; 结点到自身总是可达的; 即等价关系
R
=
{
<
u
,
v
>
∣
u
,
v
∈
V
,
u
R=\{<u,v>|u,v\in V,u
R={<u,v>∣u,v∈V,u 到
v
v
v 可达
}
\}
}
距离: 短程线 (可达的最短通路) 的距离
d
(
v
i
,
v
j
)
d(v_i,v_j)
d(vi,vj); 记不可达时
d
(
v
i
,
v
j
)
=
∞
d(v_i,v_j)=\infty
d(vi,vj)=∞; 无向图中
d
d
d 即为度量; 有向图中不满足对称性.
长度定理:
n
n
n 阶图中若存在两结点通路, 则存在该两结点长度不大于
n
−
1
n-1
n−1 的基本通路; 若存在某结点回路, 则存在该结点长度不大于
n
n
n 的基本回路.
Floyd: 线图中邻接矩阵
A
n
×
n
A_{n\times n}
An×n, 考虑
A
k
A^k
Ak
a
i
j
(
k
)
a_{ij}^{(k)}
aij(k);
d
(
v
i
,
v
j
)
=
∞
(
∑
k
=
1
n
a
i
j
k
)
=
0
;
inf
{
k
=
1
,
2
,
.
.
.
,
n
∣
a
i
j
k
≠
0
}
d(v_i,v_j)=\infty\ (\sum_{k=1}^na_{ij}^k)=0;\ \inf\{k=1,2,...,n|a_{ij}^{k}\ne 0\}
d(vi,vj)=∞ (∑k=1naijk)=0; inf{k=1,2,...,n∣aijk=0}; 即可达矩阵
P
=
⋁
i
=
1
n
A
i
P=\bigvee_{i=1}^n A^{i}
P=⋁i=1nAi.
连通: 无向图中任何两个结点都是可达的. 有向图中略去方向得到的无向图连通 (弱连通); 任何两个节点间至少有一个方向可达 (单向连通)
⟺
\iff
⟺ 存在一条经过所有结点的通路; 任何两个节点间互相可达 (强连通)
⟺
\iff
⟺ 存在一条经过所有结点的回路.
连通分支: 可达关系导出的子图, 即最大连通子图, 记数目为
p
(
G
)
p(G)
p(G); 特别地, 连通图
p
(
G
)
=
1
p(G)=1
p(G)=1.
割集: 无向图中
V
′
⊂
V
V'\subset V
V′⊂V,
p
(
G
−
V
′
)
>
p
(
G
)
p(G-V')>p(G)
p(G−V′)>p(G) 而
∀
V
′
′
⊊
V
′
\forall V''\subsetneq V'
∀V′′⊊V′,
p
(
G
−
V
′
′
)
=
p
(
G
)
p(G-V'')=p(G)
p(G−V′′)=p(G), 此时
V
′
V'
V′ 为点隔集, 特别只有一个节点时为割点; 类似有边割集和割边(桥)。
连通度: 点连通度
κ
(
G
)
\kappa(G)
κ(G) 为最小点割集势, 规定完全图为
n
−
1
n-1
n−1, 非连通图为
0
0
0; 边连通度
λ
(
G
)
\lambda(G)
λ(G) 为最小边割集势, 规定非连通图为
0
0
0.
无向图中
κ
(
G
)
≤
λ
(
G
)
≤
δ
(
G
)
\kappa(G)\leq\lambda(G)\leq\delta(G)
κ(G)≤λ(G)≤δ(G), 其中
δ
(
G
)
\delta(G)
δ(G) 为最小度.
有向图中每个节点位于且仅位于一个弱/强连通分支中, 至少位于一个单向连通分支中; 每一条边至多位于一个强连通分支中, 至少位于一个单向连通分支中, 位于且仅位于一个弱连通分支中.
树: 连通且无回路的无向图; 度为
1
1
1 的结点为叶, 其余为分支或内部; 每个连通分支均为树的无向图为森林.
无向图中
∣
V
∣
=
n
|V|=n
∣V∣=n,
∣
E
∣
=
m
|E|=m
∣E∣=m:
G
G
G 为树
⟺
\iff
⟺
G
G
G 中无回路且
m
=
n
−
1
⟺
G
m=n-1\iff G
m=n−1⟺G 连通且
m
=
n
−
1
⟺
G
m=n-1\iff G
m=n−1⟺G 中无回路但任意两个结点间新增边可以得到唯一一条基本回路
⟺
G
\iff G
⟺G 连通但删除任意一条边后不连通 (
n
≥
2
n\geq 2
n≥2)
⟺
G
\iff G
⟺G 任意两结点间都有唯一的基本通路(
n
≥
2
n\geq 2
n≥2).
非平凡树都至少有两个叶.
生成树: 无向图的某个生成子图为树; 生成树中的边为树枝, 不在生成树中的边为弦, 弦的集合为补. 破圈法, 删除
m
−
n
+
1
m-n+1
m−n+1 条边; 避圈法, 选取
n
−
1
n-1
n−1 条边, 广度优先搜索.
无向图存在生成树
⟺
\iff
⟺ 连通.
最小生成树: 权值最小. Kruskal, 依次选取无回路的最小权边; Prim, 从某结点出发依次选取无回路最小权邻接结点.
有向树: 有向图略去方向后为树.
根数: 非平凡有向图; 恰有一个结点入度为
0
0
0 为根, 其余所有结点入度均为
1
1
1, 出度为
0
0
0 的结点为叶; 根到叶的道路长度为层数, 最大层数为高; 结点
v
v
v 到结点
u
u
u 可达, 则
v
v
v 为祖先,
u
u
u 为后代; 特别
<
v
,
u
>
∈
E
<v,u>\in E
<v,u>∈E 时,
v
v
v 为
u
u
u 父亲,
u
u
u 为
v
v
v 儿子; 两结点为同一结点儿子, 则为兄弟.
有序树: 规定每一层结点的次序.
k
k
k 元树: 每个分支至多有
k
k
k 个儿子; 特别二元树中有左儿子/右儿子, 左子树/右子树; 特别每个分支恰有
k
k
k 个儿子则为
k
k
k 元完全树, 此时有
i
(
k
−
1
)
=
t
−
1
i(k-1)=t-1
i(k−1)=t−1, 其中
t
t
t 为叶数,
i
i
i 为分支数.
二元树深度优先遍历: 先根 - 根左右; 中根 - 左根右; 后根 - 左右根.
根树转化为二元树 - 保留左儿子, 弟弟变右儿子; 森林转化为二元树 - 树均转化为二元树, 右二元树作为左二元树的右子树.
前缀码: 码串集合中任意两个码串互不为前缀.
最优树: 叶赋权值
w
i
w_i
wi, 层数
L
i
L_i
Li, 赋权二元树权值为
w
(
T
)
=
∑
w
i
L
i
w(T)=\sum w_iL_i
w(T)=∑wiLi; 给定一组权值, 使得
w
(
T
)
w(T)
w(T) 最小.
Huaffman: 依次取两个最小权子树作为左子树与右子树组成新子树; 根结点出发, 左
0
0
0 右
1
1
1 编码至叶.
Euler 图: 无孤立结点图中存在一条回路, 经过所有边恰好一次.
无向图有 Euler 通路
⟺
\iff
⟺ 连通且仅有
2
2
2 个或
0
0
0 个奇度数结点.
有向图有 Euler 通路
⟺
\iff
⟺ 连通且除
2
2
2 个结点外入度等于出度, 两结点中一个入度比出度大
1
1
1, 一个出度比入度大
1
1
1.
无向图为 Euler 图
⟺
\iff
⟺ 连通且所有结点度数均为偶数.
有向图为 Euler 图
⟺
\iff
⟺ 连通且所有结点入度等于出度.
Fleury: 从某结点出发依次优先选剩余边集中的非桥边.
中国邮递员问题: 根据奇度数结点短线程做完全图, 求最小完美匹配并添加平行边.
Hamilton 图: 图中存在一条回路, 经过所有结点恰好一次 (起始结点除外).
无向图有 Hamilton 通路
⟹
∀
∅
≠
V
′
⊂
V
\implies \forall \emptyset\ne V'\subset V
⟹∀∅=V′⊂V,
p
(
G
−
V
′
)
≤
∣
V
∣
+
1
p(G-V')\leq|V|+1
p(G−V′)≤∣V∣+1
无向图为 Hamilton 图
⟹
∀
∅
≠
V
′
⊂
V
\implies \forall \emptyset\ne V'\subset V
⟹∀∅=V′⊂V,
p
(
G
−
V
′
)
≤
∣
V
∣
p(G-V')\leq|V|
p(G−V′)≤∣V∣.
简单无向图任意两个非邻接结点有
d
e
g
(
u
)
+
d
e
g
(
v
)
≥
∣
V
∣
−
1
⟹
{\rm deg}(u)+{\rm deg}(v)\geq |V|-1 \implies
deg(u)+deg(v)≥∣V∣−1⟹ 存在 Hamilton 通路.
简单无向图任意两个非邻接结点有
d
e
g
(
u
)
+
d
e
g
(
v
)
≥
∣
V
∣
⟹
{\rm deg}(u)+{\rm deg}(v)\geq |V| \implies
deg(u)+deg(v)≥∣V∣⟹ Hamilton 图.
简单无向图中任意结点有
deg
(
v
)
≥
∣
V
∣
2
≥
3
2
⟹
{\deg}(v)\geq\frac{|V|}{2}\geq\frac{3}{2}\implies
deg(v)≥2∣V∣≥23⟹ Hamilton 图.
简单有向图中忽略方向的无向图中含生成完全子图
K
∣
V
∣
⟹
K_{|V|}\implies
K∣V∣⟹ 存在 Hamilton 通路.
旅行商问题: 最邻近 - 从某结点出发依次选取最小权邻接结点; 抄近路 - 最小生成树添加平行边, 找到 Euler 回路并得到 Hamlilton 回路.
二分图 (偶图): 无向图中
∃
V
1
,
V
2
⊊
V
\exists V_1,V_2\subsetneq V
∃V1,V2⊊V,
V
1
∪
V
2
=
V
V_1\cup V_2=V
V1∪V2=V,
V
1
∩
V
2
=
∅
V_1\cap V_2=\emptyset
V1∩V2=∅,
∀
e
=
{
v
1
,
v
2
}
∈
E
\forall e=\{v_1,v_2\}\in E
∀e={v1,v2}∈E,
v
1
∈
V
1
v_1\in V_1
v1∈V1,
v
2
∈
V
2
v_2\in V_2
v2∈V2;
V
1
,
V
2
V_1,V_2
V1,V2 为互补结点子集.
完全二分图:
∀
v
1
∈
V
1
,
v
2
∈
V
2
\forall v_1\in V_1, v_2\in V_2
∀v1∈V1,v2∈V2,
∃
!
e
∈
E
\exists ! e\in E
∃!e∈E,
e
=
{
v
1
,
v
2
}
e=\{v_1,v_2\}
e={v1,v2}.
无向图为偶图
⟺
\iff
⟺ 所有回路长度均为偶数.
匹配: 偶图中
∀
v
1
∈
V
1
\forall v_1\in V_1
∀v1∈V1,
∃
e
∈
E
,
v
2
∈
V
2
\exists e\in E, v_2\in V_2
∃e∈E,v2∈V2,
e
=
(
v
1
,
v
2
)
e=(v_1,v_2)
e=(v1,v2); 即
E
E
E 为
V
1
V_1
V1 到
V
2
V_2
V2 单射的扩张.
Hall: 偶图存在
V
1
V_1
V1 到
V
2
V_2
V2 的匹配
⟺
V
1
\iff V_1
⟺V1 中任意
k
k
k 个结点至少与
V
2
V_2
V2 中
k
k
k 个结点相邻.
偶图中
V
1
V_1
V1 中每个结点至少关联
t
t
t 条边且
V
2
V_2
V2 中每个结点至多关联
t
t
t 条边
⟹
\implies
⟹ 存在
V
1
V_1
V1 到
V
2
V_2
V2 的匹配.
平面图: 平面中无向图边交点只有公共结点; 边包围内部不含边和结点的为面, 面的边界长度为次数; 平面图只有一个无限面.
平面图所有面的次数之和为边数的
2
2
2 倍.
Euler: 连通平面图中, 结点数
−
-
− 边数
+
+
+ 面数
=
2
=2
=2.
∣
E
∣
≥
2
|E|\geq 2
∣E∣≥2 简单连通平面图
⟹
∣
E
∣
≤
3
∣
V
∣
−
6
\implies |E|\leq 3|V|-6
⟹∣E∣≤3∣V∣−6.
简单连通平面图, 每个面次数至少为
D
≥
3
⟹
∣
E
∣
≤
D
D
−
2
(
∣
V
∣
−
2
)
D\geq 3\implies |E|\leq\frac{D}{D-2}(|V|-2)
D≥3⟹∣E∣≤D−2D(∣V∣−2).
Kuratowski: 平面图
⟺
\iff
⟺ 任何子图不会收缩为
K
5
K_5
K5 或
K
3
,
3
K_{3,3}
K3,3.