numpy中数据的升维

这里给出一维和二维数组的实例,至于三维及更高维的就自行脑补了

一维:

import numpy as np     
a = np.array([1, 2, 3])
print(a.shape)     ----->(3,)

b = a[None]
print(b.shape)     ----->(1, 3)

c = a[:, None]
print(c.shape)     ----->(3, 1)

二维:

import numpy as np     
d = np.array([[1, 2, 3], [1, 2, 3]])
print(d.shape)       ----->(2, 3)

e = d[:, :, None]
print(e.shape)       ----->(2, 3, 1)

f = d[:, None, :]
print(f.shape)        ----->(2, 1, 3)

总结:None所在的位置就是需要升维的位置。

转载于:https://www.cnblogs.com/czz0508/p/10833539.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值