有些恰当的比喻,简洁的却抓住本质的描述,对学习理解挺有帮助
有一些数学原理,可能你生活中曾使用过,甚至当作常识的,当它套上专有名词时,就有点不可亲近的味道。去弄清它吧,世界又被你踩在脚下了,有没有? 呵呵,开个玩笑。
比如狄利克雷分布, 我刚开始接触这个名词是在前我司的大数据产品资料上。一段文字,当然也有图片,好像看懂了吧。。又好像没看懂。当然肯定没记住。不过,如果现在要我讲,我有信心能给大妈级别(抗拒用智能手机)的人讲明白。。什么? 你也想知道? 好吧。。 easy!
先搞清beta 分布,狄利克雷分布就自然清楚了。 beta分布就是 。。
我有个闺蜜同事,体重只有80多斤,生完娃了没多久直到现在仍然只有80多斤那种。拼命吃东西拼命吃肉仍然80多斤 仍然各种渠道求增肥方法那种。我需要你预测 10年后她体重是否超过100斤的机率。 什么? 你猜只有0.01%,很好, 我答案跟你类似。 另一好友吃货美食家,健康匀称,100斤+-5%。当体重达到一定值时,看心情,自律能力也不错,可能能立即hold住增势。请你预测 10年后她体重是否超过100斤的机率。 这回估计你也猜不准了吧。给个55% ? 哈哈,这个0.01%, 55% 就是beta分布,关于(二项式)概率的概率分布。
而狄利克雷分布就是关于多项式的概率分布。比如随便拿到一篇新闻,它属于娱乐新闻的概率,肯定比属于教育新闻的概率高; 它属于社会新闻的概率,肯定比属于家装新闻的概率高。 这些属于不同类别(多项式)的概率分布 ,就是狄利克雷分布。
有时,先利用狄利克雷分布,先不需要做其他精确的分析预测,你猜对它归属的分类的可能性 就比平均分配或随便乱猜 机率更高一点。然后,再继续用各种机器学习算法吧 :) (当然,没有这样的先后顺序,事实是机器学习中用到了狄利克雷分布)