机器学习
文章平均质量分 76
anthea_luo
这个作者很懒,什么都没留下…
展开
-
paddleocr 做识别时,怎么让CPU多核都跑起来
paddleocr 多核cpu原创 2023-07-21 19:49:47 · 3958 阅读 · 0 评论 -
贝叶斯公式的两种理解
贝叶斯公式 例子原创 2022-06-20 19:31:33 · 787 阅读 · 1 评论 -
瑞利商 瑞利熵
瑞利商 Rayleigh quotient瑞利熵 renyi entropy 也称Rényi熵 瑞丽熵瑞利商 定义为函数R(A,x): 其中A为nxn的实对称矩阵(其实原定义中是埃尔米特矩阵,不过机器学习中遇不到复数所以就保留在实对称矩阵了)其有一个很重要的性质是这是一个关于向量x的函数, 它的最大值和最小值 分别对应着 A的最大特征值和最小特征值瑞利商经常出现在降维和聚类任务中,因为降维聚类任务往往能导出 最大化最小化瑞利熵的式子,进而通过特征值分解的方式找...原创 2020-11-09 21:26:19 · 6421 阅读 · 0 评论 -
关于ARIMA系列模型:为什么 自相关拖尾 偏相关截尾 就用AR?
之前是从DNN CNN RNN LSTM这样看下来的,当知道时间序列有另外的ARIMA处理模型时,刚看时有点转不过来,相当的疑惑;时间趋势可分解为: 内在趋势/季节性趋势/周期性趋势/噪音 这个还好理解;对ARIMA模型中 判断拖尾截尾来决定用AR还是MA模型,那真是相当地不明白啥情况。搜了很多,好像了解一点,又好像没明白。实际就是没明白。当时做的笔记有:自相关拖尾 偏相关截尾 则用AR算法...原创 2019-07-24 21:16:18 · 13386 阅读 · 5 评论 -
np.cov()容易忽略的地方/坑
五个样本,每个样本二维特征import numpy as npa = np.array([(2.5, 2.3), (1.5, 1.3), (2.2, 2.9), (2.1, 2.7), (1.7, 1.9)])用np.cov(a)得到的结果 是一个shape为(5, 5)的arrayarray([[ 0.02 , 0.02 , -0.07 , -0.06 , -0.02 ],...原创 2019-07-03 21:05:41 · 3566 阅读 · 2 评论 -
关于knn KD树的搜索最近邻的例子
KD树的建树好理解,但KD树的搜索最近邻有点绕"对于一个目标点,我们首先在KD树里面找到包含目标点的叶子节点。以目标点为圆心,以目标点到叶子节点样本实例的距离为半径,得到一个超球体,最近邻的点一定在这个超球体内部。然后返回叶子节点的父节点,检查另一个子节点包含的超矩形体是否和超球体相交,如果相交就到这个子节点寻找是否有更加近的近邻,有的话就更新最近邻。如果不相交那就简单了,我们直接返回父节点的父...原创 2018-09-16 15:29:49 · 1588 阅读 · 0 评论 -
机器学习中的性能 与传统IT行业所指的性能 区别
之前看好多机器学习的文章,总不能理解他们说的模型性能好不好。 从传统行业来看,做的产品能跑起来,实现客户需求,这叫功能。功能实现了后,再看在超大话务模型/超大业务请求量下的表现,叫性能。 接着还有DFX, 即(Design for X, 可靠性/兼容性/可维护性/可测试性包括用户体验等等一系列) 但是在机器学习领域中,性能是指 模型最终的预测能力(准确性), 这个其实偏离传统行业的功能的意义。以...原创 2018-06-09 12:12:26 · 285 阅读 · 0 评论 -
对gibbs采样算法中的 罐子模型 的理解
在之前学习gibbs采样算法时,https://www.cnblogs.com/pinard/p/6867828.html对这句话,觉得很难理解, 不明白为什么要去掉i 联合分步的概率从哪里来 ? 这句话是整篇文章的精华和关键。。搜了其他很多的文章, 仍然不懂, 为何 排除当前词的主题分布,即 根据其他词的主题分布和主题下观察到的单词 可以用来计算 当前词 主题的概率 ?最后在这篇文章中醒悟了...原创 2018-06-09 12:04:59 · 733 阅读 · 0 评论 -
beta分布 狄利克雷分布
有些恰当的比喻,简洁的却抓住本质的描述,很有帮助。有一些数学原理,可能你生活中曾使用过,甚至当作常识的,当它套上专有名词时,就有点不可亲近的味道。去弄清它吧,世界又被你踩在脚下了,有没有? 呵呵,开个玩笑。比如狄利克雷分布, 我刚开始接触这个名词是在前我司的大数据产品资料上。一段文字,当然也有图片,好像看懂了吧。。又好像没看懂。当然肯定没记住。不过,如果现在要我讲,我有信心能给大妈级别(抗拒用...原创 2018-06-10 21:13:11 · 693 阅读 · 0 评论 -
关于模型评价标准的例子
昨天一道笔试面试题,举例解释说明 如下模型评价指标 的含义accuracy = (TP + TN) / (TP+FP + TN +FN)TPR=TP/(TP+FN)TNR=TN/(TN+FP)precision = TP / (TP+FP)举什么例子呢? 先想到了苹果。 阿信不是再吃一颗苹果么,电影天浴里受到伤害的小姑娘 不吃默默关心她的人为她掏的鸟...原创 2018-06-15 18:04:33 · 2028 阅读 · 0 评论 -
关于决策树的特征选择, 信息量/信息熵/相对熵/交叉熵的例子
说到决策树,必须了解信息熵。在没有接触机器学习之前,知道熵这个概念:描述事务的混乱程度。(当然,有更准确的或不同维度的定义,比如 能量中不能用来做功的部分)如果没有外力,世界总是在熵增。 比如气体扩散后不可能自己缩回去。而换个角度想,我们总是想去做一些事,让熵减。一个乱糟糟堆满各式各样东西的桌子,如果付出时间和力气,把它整理得干干净净分门别类, 那它就从熵多到熵少了。 类似地,统计学/...原创 2018-07-11 21:43:59 · 2557 阅读 · 0 评论 -
knn python实现
knn原理请见:https://www.cnblogs.com/pinard/p/6061661.htmlhttps://zhuanlan.zhihu.com/p/22345658?refer=hgjjsms在特征和样本数量较小时,可以直接计算距离;数量大时就不行了,要在学习的过程中建树,具体上面两组文章中都有试着写一下 直接计算距离时的代码:import randomimport numpy a...原创 2018-07-01 19:31:59 · 508 阅读 · 0 评论