贝叶斯公式的两种理解

本文深入浅出地介绍了贝叶斯公式及其两种理解方式,通过全概率公式与贝叶斯公式对比,揭示了从结果推断原因的逆向思考过程。并以疾病检测、机器状态与生产合格产品、多云与下雨概率为例,阐述了如何运用贝叶斯公式解决实际问题。
摘要由CSDN通过智能技术生成

贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B)

含义是: 在已知B发生的情况下 A发生的概率。

贝叶斯公式 是机器学习中 比较基础的,也是最开始学习就会接触的,下面一起来看看,它的两种理解方式吧。

有一种说法是:
全概率公式描述的是 对于同一个结果,有多种形成的原因,问造成这种结果的概率是多少?    可以理解为 因果关系中 顺的过程
贝叶斯公式描述的是 当已知结果,问导致这个结果的某种原因的可能性 是多少? 执果索因。  可以理解为 因果关系中 求逆的过程
这样,在上面的公式里,可以A是原因 B是结果,  但在上面的公式里,A和B也可以是独立的事件。


把公式中的分母 移到另一边,P(A|B) * P(B) = P(B|A) * P(A)  得到的意义是:  发生B且发生A的概率 = 发生A且发生B的概率   也就是AB的交集。 也就是两件事都发生。 但发生的顺序可以不同,可以对应到两种 对贝叶斯公式的理解方式:

如果B先发生,只需关注 B发生后的情况,如下右图   阴影部分 占B事件的比例  即为所求概率
如果A先发生,先验概率 * 调整因子    调整因子是指 (条件概率 / 全概率)

 

有三种常见的例子,如:

某种疾病的检查结果 (假设一个地区的此疾病发病率  千分之一。某种测试手段 对真有此疾病的人 测试结果是 100% 阳性,就是没有失误;但是对没有此疾病的人测试的结果 可能有 5% 的可能性 误诊为阳性。 有一个人被测出 此疾病阳性,那么这个人真串病的可能性是多少?)
或 机器状态与生产合格产品的例子  (机器良好状态 生产合格产品几率是 90%,在故障状态 生产合格产品几率是 30%,机器良好的概率是 75%。若一日第一件产品是合格品,那么此日 机器良好的概率是多少。)
或 多云和下雨的例子:(50%的雨天的早上 是多云的, 大约40%的日子 早上是多云的, 此地区平均30天里一般只有3天会下雨,10%下雨概率。如果今天多云,下雨的概率是多少。)

阴影部分 占B事件的比例先验概率 * 调整因子
疾病检测交集(既检阳又真患病) / 检阳患病 * 调整因子 (真患病阳性/所有阳性)
机器状态交集(既产品合格又真机器良好) / 产品合格机器良好 * 调整因子 (良好合格/所有合格)
云雨概率交集(既多云又下雨) / 多云下雨 * 调整因子 (雨云/所有云)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 贝叶斯公式是一种用于计算概率的公式,可以用来评估某个事件发生的可能性。公式的形式为: P(A|B) = P(B|A) * P(A) / P(B) 其,P(A|B) 表示在 B 已知的情况下,A 发生的概率。P(B|A) 表示在 A 发生的情况下,B 发生的概率。P(A) 表示 A 发生的概率,P(B) 表示 B 发生的概率。 举个例子,假设有两个事件 A 和 B,你想知道在 B 已知的情况下 A 发生的概率。你可以使用贝叶斯公式来计算这个概率。 例如,假设你想知道在测试出现阳性的情况下,患有疾病的概率。你可以用以下方式计算: P(疾病|阳性) = P(阳性|疾病) * P(疾病) / P(阳性) 其,P(疾病) 表示患有疾病的概率,P(阳性) 表示测试出现阳性的概率,P(阳性|疾病) 表示在患有疾病的情况下测试出现阳性的概率,P(疾病|阳性) 表示在测试出现阳性的情况下患有疾病的概率。 使用 python 代码计算贝叶斯公式的例子如下: ``` ### 回答2: 贝叶斯公式是概率论一种重要的公式,用于计算条件概率。它将先验概率和后验概率联系起来,使我们能够根据新的证据重新修正我们的信念。 具体地说,贝叶斯公式可以表示为: P(A|B) = (P(B|A) * P(A)) / P(B) 其,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的无条件概率。 下面我们用Python代码来说明如何使用贝叶斯公式进行分类。 ```python # 导入需要的库 import numpy as np # 定义先验概率和条件概率 prior_prob = np.array([0.3, 0.7]) # 两个类别的先验概率 likelihood = np.array([[0.6, 0.4], [0.8, 0.2]]) # 条件概率矩阵 # 定义观测到的数据 observed_data = np.array([1, 0, 1]) # 三个特征的观测值,1表示特征存在,0表示特征不存在 # 计算后验概率 posterior_prob = prior_prob * np.prod(likelihood ** observed_data, axis=1) # 根据贝叶斯公式计算后验概率 # 归一化后得到分类结果 posterior_prob /= np.sum(posterior_prob) # 输出结果 print("后验概率为:", posterior_prob) ``` 其,prior_prob是一个长度为k的数组,表示k个类别的先验概率;likelihood是一个k×n的矩阵,表示每个类别在n个特征上的条件概率;observed_data是一个长度为n的数组,表示观测到的n个特征的取值。 代码,我们通过np.prod函数计算了每个类别在观测数据上的条件概率连乘积,然后与先验概率相乘得到后验概率,最后使用归一化将后验概率转换为分类结果。输出结果即为不同类别的后验概率。 ### 回答3: 贝叶斯公式是一种概率论常用的公式,用于计算在已知某些条件下的概率。其表达式为: P(A|B) = P(B|A) * P(A) / P(B) 其,P(A|B)表示在已知事件B发生的条件下,事件A发生的概率;P(B|A)表示在已知事件A发生的条件下,事件B发生的概率;P(A)和P(B)分别表示事件A和事件B的概率。 理解贝叶斯公式的关键在于识别和理解概率的条件关系。 下面是一个使用Python代码举例的案例: 假设有某个疾病,测试结果有两种:阳性和阴性。假设这个疾病在人群的患病率是0.01,而测试的准确率是0.99(即在有疾病的人,99%的测试结果为阳性;在没有疾病的人,1%的测试结果为阳性)。 现在问题是,如果一个人得出阳性结果,那么他真的患病的概率是多少? ```python # 计算贝叶斯公式 def bayes_theorem(p_a, p_b_given_a, p_b): return (p_b_given_a * p_a) / p_b # 已知的概率 p_a = 0.01 # 疾病的患病率 p_b_given_a = 0.99 # 在已知患病的条件下,测试结果为阳性的概率 p_b = (p_b_given_a * p_a) + (0.01 * 0.01) # 测试结果为阳性的总概率 # 使用贝叶斯公式计算患病的概率 p_a_given_b = bayes_theorem(p_a, p_b_given_a, p_b) print(p_a_given_b) # 输出患病的概率 ``` 运行以上代码,可以得出阳性结果的人真的患病的概率为0.495。这个例子展示了如何使用贝叶斯公式来计算概率,通过已知条件计算出未知条件的概率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值