贝叶斯公式的两种理解

本文深入浅出地介绍了贝叶斯公式及其两种理解方式,通过全概率公式与贝叶斯公式对比,揭示了从结果推断原因的逆向思考过程。并以疾病检测、机器状态与生产合格产品、多云与下雨概率为例,阐述了如何运用贝叶斯公式解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯公式:P(A|B) = P(B|A) * P(A) / P(B)

含义是: 在已知B发生的情况下 A发生的概率。

贝叶斯公式 是机器学习中 比较基础的,也是最开始学习就会接触的,下面一起来看看,它的两种理解方式吧。

有一种说法是:
全概率公式描述的是 对于同一个结果,有多种形成的原因,问造成这种结果的概率是多少?    可以理解为 因果关系中 顺的过程
贝叶斯公式描述的是 当已知结果,问导致这个结果的某种原因的可能性 是多少? 执果索因。  可以理解为 因果关系中 求逆的过程
这样,在上面的公式里,可以A是原因 B是结果,  但在上面的公式里,A和B也可以是独立的事件。


把公式中的分母 移到另一边,P(A|B) * P(B) = P(B|A) * P(A)  得到的意义是:  发生B且发生A的概率 = 发生A且发生B的概率   也就是AB的交集。 也就是两件事都发生。 但发生的顺序可以不同,可以对应到两种 对贝叶斯公式的理解方式:

如果B先发生,只需关注 B发生后的情况,如下右图   阴影部分 占B事件的比例  即为所求概率
如果A先发生,先验概率 * 调整因子    调整因子是指 (条件概率 / 全概率)

 

有三种常见的例子,如:

某种疾病的检查结果 (假设一个地区的此疾病发病率  千分之一。某种测试手段 对真有此疾病的人 测试结果是 100% 阳性,就是没有失误;但是对没有此疾病的人测试的结果 可能有 5% 的可能性 误诊为阳性。 有一个人被测出 此疾病阳性,那么这个人真串病的可能性是多少?)
或 机器状态与生产合格产品的例子  (机器良好状态 生产合格产品几率是 90%,在故障状态 生产合格产品几率是 30%,机器良好的概率是 75%。若一日第一件产品是合格品,那么此日 机器良好的概率是多少。)
或 多云和下雨的例子:(50%的雨天的早上 是多云的, 大约40%的日子 早上是多云的, 此地区平均30天里一般只有3天会下雨,10%下雨概率。如果今天多云,下雨的概率是多少。)

阴影部分 占B事件的比例先验概率 * 调整因子
疾病检测交集(既检阳又真患病) / 检阳患病 * 调整因子 (真患病阳性/所有阳性)
机器状态交集(既产品合格又真机器良好) / 产品合格机器良好 * 调整因子 (良好合格/所有合格)
云雨概率交集(既多云又下雨) / 多云下雨 * 调整因子 (雨云/所有云)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值