深度学习(三十八)——深度强化学习(1)教程

教程

http://incompleteideas.net/sutton/book/the-book-2nd.html

《Reinforcement Learning: An Introduction》,Richard S. Sutton和Andrew G. Barto著。

注:Richard S. Sutton,加拿大计算机科学家,麻省大学阿姆赫斯特分校博士(1984年),阿尔伯塔大学教授。强化学习之父,研究该领域长达三十余年。

Andrew G. Barto,麻省大学阿姆赫斯特分校教授。Richard S. Sutton的导师。

http://incompleteideas.net/sutton/609%20dropbox/slides%20(pdf%20and%20keynote)/

Sutton的pdf和keynote

注:资料中的.key文件即为keynote文件。这种格式是苹果设备上的专用ppt格式,在其他系统中查看不了。

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

UCL Course on RL

David Silver,剑桥大学本科(1997年)+阿尔伯塔大学博士(2011年)。伦敦大学学院讲师。现为DeepMind研究员。AlphaGo之父。

Silver的名声直追他的导师Sutton,这个教程也流传很广。后续介绍的教程中,多有对它的抄袭。

http://www.meltycriss.com/2017/09/09/note-reinforcement-learning/

课程笔记《UCL强化学习》。这个blog包含大量的思维导图。

https://mp.weixin.qq.com/s/_PVe7Gcq7Yk8nOFJFPcUQw

叶强:David Silver《深度强化学习》公开课教程学习笔记完整版

https://github.com/clamesc/reinforcement-learning-mindmap

另一个版本的David Silver课程的思维导图。

http://web.stanford.edu/class/cs234/syllabus.html

CS234: Reinforcement Learning

http://rail.eecs.berkeley.edu/deeprlcourse/

CS 294: Deep Reinforcement Learning

以上1本书+4个课程,基本就是目前RL领域的黄金搭档了。Stanford的课程内容比较新,但是很浅。UCB的课程通常都是给入门以后的人准备的,无论DL还是RL,都是这样。Sutton和Silver的课程内容比较老,但是很有深度。和CV领域只需要学习DL,而不需要学习传统方法不同,按照Sutton的说法,基本算法原理远比神经网络更重要。

http://www.eecs.wsu.edu/~taylorm/17_580/index.html

CptS 580: Reinforcement Learning

http://www.eecs.wsu.edu/~taylorm/2011_cs420/index.html

Artificial Intelligence。这个课程名义上叫AI,实则包括状态空间搜索、强化学习和贝叶斯网络三部分内容。

http://www.eecs.wsu.edu/~taylorm/2010_cs414/index.html

Introduction to Machine Learning。Matthew E. Taylor的本行是RL,所以不管什么课程,都有RL的内容。

Matthew E. Taylor,安默斯特学院本科(2001年)+德州大学奥斯汀分校博士(2008年)。华盛顿州立大学副教授。

https://katefvision.github.io/

CMU: Deep Reinforcement Learning and Control

https://course.ie.cuhk.edu.hk/~ierg6130/schedule.html

香港中文大学:Reinforcement Learning

https://github.com/aikorea/awesome-rl

提供了RL方面的资源网页。aikorea还提供了同类的资源收集网页:awesome-rnn, awesome-deep-vision, awesome-random-forest。

https://mp.weixin.qq.com/s/dS0oQbGtrdd4rS25cBNyoQ

面向Open AI, TensorFlow, Keras的强化学习书籍《Reinforcement Learning》

https://102.alibaba.com/downloadFile.do?file=1517812754285/reinforcement_learning.pdf

《强化学习在阿里的技术演进与业务创新》,这是阿里出品的RL实战类书籍。

https://mp.weixin.qq.com/s/RbUcEOctRm8kX6_Ar4J0CA

446页简易Python强化学习教程书籍

https://mp.weixin.qq.com/s/7DlbuJI_gARJRABnlZQcxQ

伯克利大学ICML2018强化学习80页教程

https://mp.weixin.qq.com/s/7WnlNvxk0KKVPYqvSi7fKA

40页 PPT,BMM夏令营《强化学习简明教程》

https://mp.weixin.qq.com/s/VelM7ndXfevXKfPno-T9jQ

微软亚研130PPT教程:强化学习简介

https://sites.ualberta.ca/~szepesva/RLBook.html

《Algorithms for Reinforcement Learning》

https://mp.weixin.qq.com/s/tZjIdNSLvIVzho-IlCvm6A

93页随机近似与强化学习教程分享

https://mp.weixin.qq.com/s/o1wLREqtIZpzH2NxLl9M7A

深度强化学习简介

https://mp.weixin.qq.com/s/Y9DfxQJ-w23QXxKV0z26ag

MIT科学家Dimitri P. Bertsekas最新2019出版《强化学习与最优控制》

https://mp.weixin.qq.com/s/2cEd_FGmj-WVfm4KrQfMMg

《深度学习与机器人学》大牛Pieter Abbeel 105页PPT下载

https://mp.weixin.qq.com/s/u49cuDV21ITs1aV9tJR85g

Pieter Abbeel:《深度学习在机器人中的应用》

https://mp.weixin.qq.com/s/z9MvLuqjY5Xmty18ZP10WQ

UC伯克利Pieter Abbeel教授强化学习教程-附59页slides

https://github.com/enggen/DeepMind-Advanced-Deep-Learning-and-Reinforcement-Learning

DeepMind与UCL合作推出的深度学习与强化学习进阶课程

https://mp.weixin.qq.com/s/CnL1uIWef2AjIr_AwL7t-w

DeepMind研究员Tor2019著作《赌博机算法》,555页带你学习专治选择困难症技术

https://zhuanlan.zhihu.com/c_168521441

在线学习(MAB)与强化学习(RL)

https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch

PyTorch实现多种深度强化学习算法

https://mp.weixin.qq.com/s/UrwP9t-Ox4M9QImKDUDcsA

140页《深度强化学习入门》发布

https://simoninithomas.github.io/Deep_reinforcement_learning_Course/

老外写的简易深度强化学习入门

https://mp.weixin.qq.com/s/nSfvhr096aTeOHxDHy0NeA

434页《Python强化学习实用指南》

https://www.starai.io/course/

StarAi的DRL教程

https://mp.weixin.qq.com/s/eMzrktlm93ZEZi-J5sipqA

莫斯科国立大学56页《深度强化学习综述》最新论文,带你全面了解DRL最新方法

https://github.com/dennybritz/reinforcement-learning

GitHub 万星资源:强化学习算法实现,教程代码样样全,还有详细学习规划

论文

《A Brief Survey of Deep Reinforcement Learning》

《Asynchronous Methods for Deep Reinforcement Learning》

《Deep Reinforcement Learning for Dialogue Generation》

blog

https://zhuanlan.zhihu.com/sharerl

强化学习知识大讲堂

https://zhuanlan.zhihu.com/intelligentunit

一个DL+RL的专栏

https://www.cnblogs.com/pinard/category/1254674.html

一个DRL的专栏

https://www.cnblogs.com/steven-yang/tag/强化学习/

一个RL的专栏

https://www.cnblogs.com/steven-yang/tag/博弈论/

一个博弈论的专栏

工具/框架

https://mp.weixin.qq.com/s/5ScRIl2MHNGaUyIEJJKnKw

DeepMind开源强化学习研究环境Control Suite

https://mp.weixin.qq.com/s/GTjNToprM2OO7uzSRQXkHw

DeepMind开源强化学习库TRFL,关键算法可编写RL智能体

https://mp.weixin.qq.com/s/PLFxehTAXcehzIrIMRfVpA

强化学习的基石:DeepMind开源框架TRFL

https://mp.weixin.qq.com/s/ew7vmvskp_q4aM7cJM-CXg

夺魁NeurIPS 2018强化学习大赛,百度正式发布RL模型库和算法框架PARL

https://github.com/danaugrs/huskarl

基于TF2.0的深度强化学习平台:Huskarl

https://mp.weixin.qq.com/s/ApP0zNuG5OP_-HzJC1v95Q

谷歌发布开源Dopamine 2.0,让强化学习变得更灵活

https://mp.weixin.qq.com/s/Hod37LQ-eEe0EVtLfyXLGQ

DeepMind重磅开源强化学习框架!覆盖28款游戏,24多个算法(OpenSpiel)

https://zhuanlan.zhihu.com/p/68462431

谷歌开源RL足球环境

https://mp.weixin.qq.com/s/BhTX4KQnLxUQLvPUfY3q6Q

物理实验成本为零!南大LAMDA开源虚拟RL训练环境

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值