【Scikit-Learn 中文文档】随机梯度下降 - 监督学习 - 用户指南 | ApacheCN

中文文档: http://sklearn.apachecn.org/cn/0.19.0/modules/sgd.html

英文文档: http://sklearn.apachecn.org/en/0.19.0/modules/sgd.html

官方文档: http://scikit-learn.org/0.19/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html




1.5. 随机梯度下降

随机梯度下降(SGD) 是一种简单但又非常有效的方法,主要用于凸损失函数下对线性分类器的学习,例如(线性) 支持向量机 和 Logistic 回归 。 尽管 SGD 在机器学习社区已经存在了很长时间, 但是最近在 large-scale learning (大规模学习)方面 SGD 获得了相当大的关注。

SGD 已成功应用于文本分类和自然语言处理中经常遇到的大规模和稀疏的机器学习问题。考虑到数据是稀疏的,本模块的分类器可以轻易的处理超过 10^5 的训练样本和超过10^5的特征。

Stochastic Gradient Descent (随机梯度下降法)的优势:

  • 效率。
  • 易于实现 (有大量优化代码的机会)。

随机梯度下降法的劣势:

  • SGD 需要一些超参数,例如 regularization (正则化)参数和 number of iterations (迭代次数)。
  • SGD 对 feature scaling (特征缩放)敏感。

1.5.1. 分类

Warning

   

在拟合模型前,确保你 permute (重新排列)了( shuffle(打乱))你的训练数据,或者在每次迭代后用shuffle=True 来打乱。

SGDClassifier 类实现了一个简单的随机梯度下降学习程序, 支持不同的 loss functions(损失函数)和 penalties for classification(分类处罚)。

../_images/sphx_glr_plot_sgd_separating_hyperplane_0011.png

作为其他的 classifiers (分类器), SGD 必须拟合两个 arrays (数组):保存训练样本的 size 为 [n_samples, n_features] 的数组 X 以及保存训练样本目标值(类标签)的 size 为 [n_samples] 的数组 Y

>>>
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = SGDClassifier(loss="hinge", penalty="l2")
>>> clf.fit(X, y)
SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1,
       eta0=0.0, fit_intercept=True, l1_ratio=0.15,
       learning_rate='optimal', loss='hinge', max_iter=5, n_iter=None,
       n_jobs=1, penalty='l2', power_t=0.5, random_state=None,
       shuffle=True, tol=None, verbose=0, warm_start=False)

拟合后,可以用该模型来预测新值:

>>>
>>> clf.predict([[2., 2.]])
array([1])

SGD 通过训练数据来拟合一个线性模型。成员 coef_ 保存模型参数:

>>>
>>> clf.coef_                                         
array([[ 9.9...,  9.9...]])

成员 intercept_ 保存 intercept(截距) (aka offset or bias(偏移)):

>>>
>>> clf.intercept_                                    
array([-9.9...])

模型是否使用 intercept(截距), 即 a biased hyperplane(一个偏置的超平面), 是由参数 fit_intercept 控制的。

使用 SGDClassifier.decision_function 来获得与超平面的 signed distance (符号距离)

>>>
>>> clf.decision_function([[2., 2.]])                 
array([ 29.6...])

具体的 loss function(损失函数) 可以通过 loss 参数来设置。 SGDClassifier 支持以下的 loss functions(损失函数):

  • loss="hinge": (soft-margin) linear Support Vector Machine ((软-间隔)线性支持向量机),
  • loss="modified_huber": smoothed hinge loss (平滑的hinge损失),
  • loss="log": logistic regression (logistic 回归),
  • and all regression losses below(以及所有的回归损失)。

前两个 loss functions(损失函数)是懒惰的,如果一个例子违反了 margin constraint(边界约束),它们仅更新模型的参数, 这使得训练非常有效率,即使在使用 L2 penalty(惩罚)也许结果也会是稀疏的模型。

使用 loss="log" 或者 loss="modified_huber" 启用 predict_proba 方法, 其给出每个样本 x 的概率估计 P(y|x) 的一个向量:

>>>
>>> clf = SGDClassifier(loss="log").fit(X, y)
>>> clf.predict_proba([[1., 1.]])                      
array([[ 0.00...,  0.99...]])

concrete penalty(具体的惩罚)可以通过 penalty 参数来设定。 SGD 支持以下 penalties(惩罚):

  • penalty="l2": L2 norm penalty on coef_.
  • penalty="l1": L1 norm penalty on coef_.
  • penalty="elasticnet": Convex combination of L2 and L1; (1 - l1_ratio) * L2 + l1_ratio * L1.

默认设置为 penalty="l2" 。 L1 penalty (惩罚)导致稀疏解,使得大多数系数为零。 Elastic Net(弹性网)解决了在高度相关属性上 L1 penalty(惩罚)的一些不足。参数 l1_ratio 控制了 L1 和 L2 penalty(惩罚)的 convex combination (凸组合)。

SGDClassifier 通过在将多个 binary classifiers (二分类器)组合在 “one versus all” (OVA) 方案中来支持多类分类。对于每一个 K 类, 学习了一个二进制分类器来区分自身和其他 K-1 个类。在测试阶段,我们计算了每个分类的 confidence score(置信度分数)(也就是与超平面的距离)并选择由最高置信度的类。下图显示了在 iris(鸢尾花)数据集上的 OVA 方法。虚线表示三个 OVA 分类器; 背景色显示了由三个分类器引起的绝策面。

../_images/sphx_glr_plot_sgd_iris_0011.png

在 multi-class classification (多类分类)的情况下, coef_ 是 shape=[n_classes, n_features] 的一个二维数组, intercept_ is shape=[n_classes] 的一个一维数组。 coef_ 的第 i 行保存了第 i 类的 OVA 分类器的权重向量;类以升序索引 (参照属性 classes_ )。 注意,原则上,由于它们允许创建一个概率模型,所以 loss="log" 和 loss="modified_huber" 更适合于 one-vs-all 分类。

SGDClassifier 通过拟合参数 class_weight 和 sample_weight 来支持 weighted classes (加权类)和 weighted instances(加权实例)。更多信息请参照下面的示例和 SGDClassifier.fit 的文档。

SGDClassifier 支持 averaged SGD (ASGD)。Averaging(平均值)可以通过设置 `average=True` 来启用。ASGD的工作原理是在一个样本上的每次迭代上将 plain SGD(平均SGD)的系数平均。当使用 ASGD 时,学习速率可以更大甚至是恒定,主要是在一些数据集上加快训练时间。

对于一个 logistic loss(logistic 损失)的分类,具有 averaging strategy(平衡策略)的 SGD 的另一变种可用于 Stochastic Average Gradient(随即平均梯度)(SAG)算法,作为 LogisticRegression 的 solver (求解器)。

1.5.2. 回归

SGDRegressor 类实现了一个简单的随即梯度下降学习程序,它支持不同的损失函数和惩罚来拟合线性回归模型。 SGDRegressor 是非常适用于有大量训练样本(>10.000)的回归问题,对于其他问题,我们简易使用 RidgeLasso,或 ElasticNet

具体的损失函数可以通过 loss 参数设置。 SGDRegressor 支持以下的损失函数:

  • loss="squared_loss": Ordinary least squares,
  • loss="huber": Huber loss for robust regression,
  • loss="epsilon_insensitive": linear Support Vector Regression.

Huber 和 epsilon-insensitive 损失函数可用于 robust regression(稳健回归)。不敏感区域的宽度必须通过参数 epsilon 来设定。这个参数取决于目标变量的规模。

SGDRegressor 支持 averaged(平均)SGD 作为 SGDClassifier。 平均值可以通过设置 `average=True` 来启用。

对于一个 squared loss(平方损失)和一个 l2 penalty(l2惩罚)的回归,具有 averaging strategy(平衡策略)的 SGD 的另一变种可用于 Stochastic Average Gradient(随即平均梯度)(SAG)算法,作为 Ridge 中的 solver(求解器)。

1.5.3. 稀疏数据的随机梯度下降

Note

   

由于一个对于截距是缩小的学习率,稀疏实现与密集实现相比产生的结果略有不同。

在 scipy.sparse 支持的格式中,任意矩阵都有对稀疏数据的内置支持。但是,为了获得最好的效率,请使用 scipy.sparse.csr_matrix 中定义CSR矩阵格式.

1.5.4. 复杂度

SGD 主要的优点在于它的效率,在训练实例的数量上基本是线性的。假如 X 是 size 为 (n, p) 的矩阵,训练成本为 O(k n \bar p),其中 k 是迭代次数, \bar p 是每个样本非零属性的平均数。

但是,最近的理论结果表明,在训练集大小增加时,运行时得到的一些期望的优化精度不会增加。

1.5.5. 实用小贴士

  • 随机梯度下降法对 feature scaling (特征缩放)很敏感,因此强烈建议您缩放您的数据。例如,将输入向量 X 上的每个属性缩放到 [0,1] 或 [- 1,+1], 或将其标准化,使其均值为 0,方差为 1。请注意,必须将 相同 的缩放应用于对应的测试向量中,以获得有意义的结果。使用 StandardScaler: 很容易做到这一点:

    from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) # Don’t cheat - fit only on training data X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # apply same transformation to test data

    假如你的 attributes (属性)有一个内在尺度(例如 word frequencies (词频)或 indicator features(指标特征))就不需要缩放。

  • 最好使用 GridSearchCV 找到一个合理的 regularization term (正则化项) \alpha , 它的范围通常在 10.0**-np.arange(1,7) 。

  • 经验性地,我们发现 SGD 在观察约 10^6 训练样本后收敛。因此,对于迭代次数的一个合理的第一猜想是 n_iter = np.ceil(10**6 / n),其中 n 是训练集的大小。

  • 假如将 SGD 应用于使用 PCA 做特征提取,我们发现通过常数 c 来缩放特征值是明智的,这样,训练数据的平均 L2 平均值等于 1。

  • 我们发现 Averaged SGD 在一个更大的特征和一个更高的 eta0 上工作的最好。

参考文献:

1.5.6. 数学描述

给定一组训练样本 (x_1, y_1), \ldots, (x_n, y_n) 其中 x_i \in \mathbf{R}^m , y_i \in \{-1,1\}, 我们的目标是一个线性 scoring function(评价函数) f(x) = w^T x + b ,其中模型参数 w \in \mathbf{R}^m ,截距 b \in \mathbf{R}。为了做预测, 我们只需要看 f(x) 的符号。找到模型参数的一般选择是通过最小化由以下式子给出的正则化训练误差

E(w,b) = \frac{1}{n}\sum_{i=1}^{n} L(y_i, f(x_i)) + \alpha R(w)

其中 L 衡量模型(mis)拟合程度的损失函数,R 是惩罚模型复杂度的正则化项(也叫作惩罚); \alpha > 0 是一个非负超平面。

L 的不同选择需要不同的分类器,例如

  • Hinge: (soft-margin) Support Vector Machines.
  • Hinge: (软-间隔) 支持向量机。
  • Log: Logistic Regression.
  • Log: Logistic 回归。
  • Least-Squares: Ridge Regression.
  • Least-Squares: 岭回归。
  • Epsilon-Insensitive: (soft-margin) Support Vector Regression.
  • Epsilon-Insensitive: (软-间隔) 支持向量回归。

所有上述损失函数可以看作是错误分类误差的上限(0 - 1损失),如下图所示。

../_images/sphx_glr_plot_sgd_loss_functions_0011.png

正则化项 R 受欢迎的选择包括:

  • L2 norm: R(w) := \frac{1}{2} \sum_{i=1}^{n} w_i^2,
  • L1 norm: R(w) := \sum_{i=1}^{n} |w_i|, which leads to sparse solutions().
  • Elastic Net: R(w) := \frac{\rho}{2} \sum_{i=1}^{n} w_i^2 + (1-\rho) \sum_{i=1}^{n} |w_i|, a convex combination of L2 and L1, where \rho is given by 1 - l1_ratio.

下图显示当 R(w) = 1 时参数空间中不同正则项的轮廓

../_images/sphx_glr_plot_sgd_penalties_0011.png

1.5.6.1. SGD

随机梯度下降法一种无约束优化问题的优化方法。与(批量)梯度下降法相反,SGD 通过一次只考虑单个训练样本来近似 E(w,b) 真实的梯度。

SGDClassifier 类实现了一个 first-order SGD learning routine (一阶 SGD 学习程序)。 算法在训练样本上遍历,并且对每个样本根据由以下式子给出的更新规则来更新模型参数

w \leftarrow w - \eta (\alpha \frac{\partial R(w)}{\partial w}+ \frac{\partial L(w^T x_i + b, y_i)}{\partial w})

其中 \eta 是在参数空间中控制步长的 learning rate (学习速率)。 intercept(截距) b 的更新类似但不需要正则化。

学习率 \eta 可以是常数或者逐渐减小。对于分类来说, 默认学习率 schedule(调度) (learning_rate='optimal')由下式给出。

\eta^{(t)} = \frac {1}{\alpha  (t_0 + t)}

其中 t 是时间步长(总共有 n_samples * n_iter 时间步长), t_0 是由 Léon Bottou 提出的启发式决定的,这样,预期的初始更新可以与权重的期望大小相比较(这假设训练样本的规范近似1)。在 BaseSGD 中的 _init_t 中可以找到确切的定义。

对于回归来说,默认的学习率是反向缩放 (learning_rate='invscaling'),由下式给出

\eta^{(t)} = \frac{eta_0}{t^{power\_t}}

其中 eta_0 和 power\_t 是用户通过 eta0 和 power_t 分别选择的超参数。

学习速率常数使用使用 learning_rate='constant' ,并使用 eta0 来指定学习速率。

模型参数可以通过成员 coef_ 和 intercept_ 来访问:

  • 成员 coef_ holds the weights(控制权重) w
  • 成员 intercept_ holds b

1.5.7. 实现细节

他对 SGD 的实现受到了 Léon Bottou Stochastic Gradient SVM 的影响。类似于 SvmSGD,权值向量表示为在 L2 正则化的情况下允许有效的权值更新的标量和向量的乘积。 在 sparse feature vectors (稀疏特征向量)的情况下, intercept (截距)是以更小的学习率(乘以 0.01)更新的,导致了它更频繁的更新。训练样本按顺序选取,每次观察后,学习率降低。 我们从 Shalev-Shwartz 等人那里获得了 learning rate schedule ( 学习率计划表 )。 对于多类分类,使用 “one versus all” 方法。 我们使用 Tsuruoka 等人提出的 truncated gradient algorithm (截断梯度算法)2009 年为 L1 正则化(和 Elastic Net )。代码是用 Cython 编写的。

参考文献:




中文文档: http://sklearn.apachecn.org/cn/0.19.0/modules/sgd.html

英文文档: http://sklearn.apachecn.org/cn/0.19.0/modules/sgd.html

官方文档: http://scikit-learn.org/0.19/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html

有兴趣的们也可以和我们一起来维护,持续更新中 。。。

机器学习交流群: 629470233

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值