OpenMMLab(3)

北京超算30区使用MMClassification训练花卉图片分类模型

步骤如下:

创建环境

根据⽤ anaconda、cuda、gcc 等基础环境模块,在N30分区可以使用module avail命令调用模块信息。
安装anaconda,创建虚拟环境,环境中安装python3.8,同时安装以下包:torch、mmcv-full、openmmlab/mmclassification,安装完成后,准备shell脚本,将环境信息存在脚本中。

数据集处理

flower 数据集包含 5 种类别的花卉图像:雏菊 daisy 588张,蒲公英 dandelion 556张,玫瑰 rose 583张,向⽇葵 sunflower 536张,郁⾦⾹ tulip 585张。

文件配置

构建配置⽂件可以使⽤继承机制,从 configs/base 中继承 ImageNet 预训练的任何模型,ImageNet 的数据集配置,学习率策略等。

提交计算

在环境、数据集、MMCls 配置⽂件准备完成之后就可以提交计算。在 N30 提交计算可以通过作业脚本的⽅式,
操作步骤如下:

  1. 新建⼀个作业脚本 run.sh,脚本的解释器可以是 /bin/sh、/bin/bash、/bin/csh 脚本
  2. 使⽤ sbatch 命令提交作业脚本
  3. 使⽤ squeue 或 parajobs 查看提交的作业
  4. 查看作业输出⽇志
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值