目标检测与MMDetection
目标检测相较于传统的图像分类,具有物体大小、位置、数量不固定的特点,因此相较于来说难度也比较大
两阶段目标检测算法
两阶段的检测范式最早由 R-CNN 确立,因包含区域提议和区域识别两个阶段得名
经历一些列发展到 Faster R-CNN 和 Mask RCNN 逐渐成熟结合比较先进的主干网络和多尺度技术可以达到
比较优越的检测精度,使用广泛
近几年(2020~)随着单阶段算法精度和速度的提高逐渐被取代
多尺度检测技术
有图像金字塔、层次化特征、特征金字塔网络等技术、这些技术各有优劣,根据实际情况进行选择。
无锚框目标检测算法
无锚框是不依赖锚框,模型基于特征直接预测对应位置是否有物体,以及边界框的位置;边界框预测完全基于模型学习,不需要人工调整超参数
目标检测模型的评估方法
MMDetection
- MMDetection 提供 400 余个性能优良的预训练模型,开箱即
用,几行 Python API 即可调用强大的检测能力 - MMDetection 涵盖 60 余个目标检测算法,并提供方便易用的
工具,经过简单的配置文件改写和调参就可以训练自己的目标检
测模型