OpenMMLab(4)

目标检测是计算机视觉中的关键技术,它比图像分类更具挑战性,涉及物体的位置和大小变化。两阶段检测算法如R-CNN系列曾占据主导,但近年来被速度快、精度高的单阶段算法取代。无锚框检测是另一种创新方法,直接预测物体边界框。MMDetection是一个全面的目标检测框架,提供多种预训练模型和便捷的工具,支持快速定制和训练检测模型。
摘要由CSDN通过智能技术生成

目标检测与MMDetection

目标检测相较于传统的图像分类,具有物体大小、位置、数量不固定的特点,因此相较于来说难度也比较大

两阶段目标检测算法

两阶段的检测范式最早由 R-CNN 确立,因包含区域提议和区域识别两个阶段得名
经历一些列发展到 Faster R-CNN 和 Mask RCNN 逐渐成熟结合比较先进的主干网络和多尺度技术可以达到
比较优越的检测精度,使用广泛
近几年(2020~)随着单阶段算法精度和速度的提高逐渐被取代

多尺度检测技术

有图像金字塔、层次化特征、特征金字塔网络等技术、这些技术各有优劣,根据实际情况进行选择。

无锚框目标检测算法

无锚框是不依赖锚框,模型基于特征直接预测对应位置是否有物体,以及边界框的位置;边界框预测完全基于模型学习,不需要人工调整超参数

目标检测模型的评估方法

在这里插入图片描述

MMDetection

  • MMDetection 提供 400 余个性能优良的预训练模型,开箱即
    用,几行 Python API 即可调用强大的检测能力
  • MMDetection 涵盖 60 余个目标检测算法,并提供方便易用的
    工具,经过简单的配置文件改写和调参就可以训练自己的目标检
    测模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值