Python中进行特征重要性分析的9个常用方法

特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。

为什么特征重要性分析很重要?

如果有一个包含数十个甚至数百个特征的数据集,每个特征都可能对你的机器学习模型的性能有所贡献。但是并不是所有的特征都是一样的。有些可能是冗余的或不相关的,这会增加建模的复杂性并可能导致过拟合。

特征重要性分析可以识别并关注最具信息量的特征,从而带来以下几个优势:

  • 改进的模型性能

  • 减少过度拟合

  • 更快的训练和推理

  • 增强的可解释性

下面我们深入了解在Python中的一些特性重要性分析的方法。

特征重要性分析方法

1、排列重要性 PermutationImportance

该方法会随机排列每个特征的值,然后监控模型性能下降的程度。如果获得了更大的下降意味着特征更重要



from sklearn.datasets import load\_breast\_cancer  
from sklearn.ensemble import RandomForestClassifier  
from sklearn.inspection import permutation\_importance  
from sklearn.model\_selection import train\_test\_split  
import matplotlib.pyplot as plt  
   
cancer = load\_breast\_cancer()  
   
X\_train, X\_test, y\_train, y\_test = train\_test\_split(cancer.data, cancer.target, random\_state=1)  
   
rf = RandomForestClassifier(n\_estimators=100, random\_state=1)  
rf.fit(X\_train, y\_train)  
   
baseline = rf.score(X\_test, y\_test)  
result = permutation\_importance(rf, X\_test, y\_test, n\_repeats=10, random\_state=1, scoring='accuracy')  
   
importances = result.importances\_mean  
   
# Visualize permutation importances  
plt.bar(range(len(importances)), importances)  
plt.xlabel('Feature Index')  
plt.ylabel('Permutation Importance')  
plt.show()


2、内置特征重要性(coef_或feature_importances_)

一些模型,如线性回归和随机森林,可以直接输出特征重要性分数。这些显示了每个特征对最终预测的贡献。



from sklearn.datasets import load\_breast\_cancer  
from sklearn.ensemble import RandomForestClassifier  
   
X, y = load\_breast\_cancer(return\_X\_y=True)  
   
rf = RandomForestClassifier(n\_estimators=100, random\_state=1)  
rf.fit(X, y)  
   
importances = rf.feature\_importances\_  
   
# Plot importances  
plt.bar(range(X.shape\[1\]), importances)  
plt.xlabel('Feature Index')  
plt.ylabel('Feature Importance')  
plt.show()


3、Leave-one-out

迭代地每次删除一个特征并评估准确性。



 from sklearn.datasets import load\_breast\_cancer  
 from sklearn.model\_selection import train\_test\_split  
 from sklearn.ensemble import RandomForestClassifier  
 from sklearn.metrics import accuracy\_score  
 import matplotlib.pyplot as plt  
 import numpy as np  
   
 # Load sample data  
 X, y = load\_breast\_cancer(return\_X\_y=True)  
   
 # Split data into train and test sets  
 X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.3, random\_state=1)  
   
 # Train a random forest model  
 rf = RandomForestClassifier(n\_estimators=100, random\_state=1)  
 rf.fit(X\_train, y\_train)  
   
 # Get baseline accuracy on test data  
 base\_acc = accuracy\_score(y\_test, rf.predict(X\_test))  
   
 # Initialize empty list to store importances  
 importances = \[\]  
   
 # Iterate over all columns and remove one at a time  
 for i in range(X\_train.shape\[1\]):  
    X\_temp = np.delete(X\_train, i, axis=1)  
    rf.fit(X\_temp, y\_train)  
    acc = accuracy\_score(y\_test, rf.predict(np.delete(X\_test, i, axis=1)))  
    importances.append(base\_acc - acc)  
       
 # Plot importance scores      
 plt.bar(range(len(importances)), importances)  
 plt.show()


4、相关性分析

计算各特征与目标变量之间的相关性。相关性越高的特征越重要。



import pandas as pd  
from sklearn.datasets import load\_breast\_cancer  
   
X, y = load\_breast\_cancer(return\_X\_y=True)  
df = pd.DataFrame(X, columns=range(30))  
df\['y'\] = y  
   
correlations = df.corrwith(df.y).abs()  
correlations.sort\_values(ascending=False, inplace=True)  
   
correlations.plot.bar()


5、递归特征消除 Recursive Feature Elimination

递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。



 from sklearn.ensemble import RandomForestClassifier  
 from sklearn.feature\_selection import RFE  
 import pandas as pd  
 from sklearn.datasets import load\_breast\_cancer  
 import matplotlib.pyplot as plt  
   
 X, y = load\_breast\_cancer(return\_X\_y=True)  
 df = pd.DataFrame(X, columns=range(30))  
 df\['y'\] = y  
   
 rf = RandomForestClassifier()  
   
 rfe = RFE(rf, n\_features\_to\_select=10)  
 rfe.fit(X, y)  
   
 print(rfe.ranking\_)


输出为[6 4 11 12 7 11 18 21 8 16 10 3 15 14 19 17 20 13 11 11 12 9 11 5 11]

6、XGBoost特性重要性

计算一个特性用于跨所有树拆分数据的次数。更多的分裂意味着更重要。



 import xgboost as xgb  
 import pandas as pd  
 from sklearn.datasets import load\_breast\_cancer  
 import matplotlib.pyplot as plt  
   
 X, y = load\_breast\_cancer(return\_X\_y=True)  
 df = pd.DataFrame(X, columns=range(30))  
 df\['y'\] = y  
   
 model = xgb.XGBClassifier()  
 model.fit(X, y)  
   
 importances = model.feature\_importances\_  
 importances = pd.Series(importances, index=range(X.shape\[1\]))  
 importances.plot.bar()


7、主成分分析 PCA

对特征进行主成分分析,并查看每个主成分的解释方差比。在前几个组件上具有较高负载的特性更为重要。



 from sklearn.decomposition import PCA  
 import pandas as pd  
 from sklearn.datasets import load\_breast\_cancer  
 import matplotlib.pyplot as plt  
   
 X, y = load\_breast\_cancer(return\_X\_y=True)  
 df = pd.DataFrame(X, columns=range(30))  
 df\['y'\] = y  
   
 pca = PCA()  
 pca.fit(X)  
   
 plt.bar(range(pca.n\_components\_), pca.explained\_variance\_ratio\_)  
 plt.xlabel('PCA components')  
 plt.ylabel('Explained Variance')


8、方差分析 ANOVA

使用f_classif()获得每个特征的方差分析f值。f值越高,表明特征与目标的相关性越强。



 from sklearn.feature\_selection import f\_classif  
 import pandas as pd  
 from sklearn.datasets import load\_breast\_cancer  
 import matplotlib.pyplot as plt  
   
 X, y = load\_breast\_cancer(return\_X\_y=True)  
 df = pd.DataFrame(X, columns=range(30))  
 df\['y'\] = y  
   
 fval = f\_classif(X, y)  
 fval = pd.Series(fval\[0\], index=range(X.shape\[1\]))  
 fval.plot.bar()


9、卡方检验

使用chi2()获得每个特征的卡方统计信息。得分越高的特征越有可能独立于目标。



 from sklearn.feature\_selection import chi2  
 import pandas as pd  
 from sklearn.datasets import load\_breast\_cancer  
 import matplotlib.pyplot as plt  
   
 X, y = load\_breast\_cancer(return\_X\_y=True)  
 df = pd.DataFrame(X, columns=range(30))  
 df\['y'\] = y  
   
 chi\_scores = chi2(X, y)  
 chi\_scores = pd.Series(chi\_scores\[0\], index=range(X.shape\[1\]))  
 chi\_scores.plot.bar()


为什么不同的方法会检测到不同的特征?

不同的特征重要性方法有时可以识别出不同的特征是最重要的,这是因为:

1、他们用不同的方式衡量重要性:

有的使用不同特特征进行预测,监控精度下降

像XGBOOST或者回国模型使用内置重要性来进行特征的重要性排列

而PCA着眼于方差解释

2、不同模型有不同模型的方法:

线性模型倾向于线性关系、树模型倾向于接近根的特征

4、交互作用:

有的方法可以获取特征之间的相互左右,而有一些则不行,这就会导致结果的差异

5、不稳定:

使用不同的数据子集,重要性值可能在同一方法的不同运行中有所不同,这是因为数据差异决定的

6、Hyperparameters:

通过调整超参数,如PCA组件或树深度,也会影响结果

所以不同的假设、偏差、数据处理和方法的可变性意味着它们并不总是在最重要的特征上保持一致。

选择特征重要性分析方法的一些最佳实践

  • 尝试多种方法以获得更健壮的视图

  • 聚合结果的集成方法

  • 更多地关注相对顺序,而不是绝对值

  • 差异并不一定意味着有问题,检查差异的原因会对数据和模型有更深入的了解

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值