实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu...

对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率,

手写数字数据集下载:http://yann.lecun.com/exdb/mnist/

首先,利用图片本身的属性,图片的灰度平均值进行识别分类,我运行出来的准确率是22%左右

利用图片的灰度平均值来进行分类实现手写图片识别(数据集50000张图片)——Jason niu

其次,利用SVM算法,我运行出来的准确率是93%左右,具体代码请点击

SVM:利用SVM算法实现手写图片识别(数据集50000张图片)—Jason niu 

 

最后,利用深度学习之神经网络,我运行出来的准确率是94%左右,具体代码请点击

NN:利用深度学习之神经网络实现手写数字识别(数据集50000张图片)—Jason niu

 

最后,我们发现神经网络和SVM的算法学习质量非常高,而传统的灰度平均值算法则差强人意!

转载于:https://www.cnblogs.com/yunyaniu/p/8277443.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值