OpenCV 基础,常用方法 导入头文件 #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> using namespace cv; using namespace std; //读取图片 void fun_imread(Mat img) { Mat img1; imshow("原图", img);//图像显示 waitKey();//读入图片显示时间waitKey(6000);显示6000毫秒,如果写,就一直显示 } //腐蚀操作函数 void fun_fs(Mat img) { //进行腐蚀操作 //卷积核所覆盖下的原图对应区域内的所有像素的最小值,用这个最小值替换当前像素值。图片通过这种局部颜色加深, //导致整体颜色加深 Mat element = getStructuringElement(MORPH_RECT, Size(10, 10));// Size的参数是卷积核的大小,越大腐蚀越严重。 //Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); Mat dstImage; erode(img, dstImage, element); imshow("腐蚀操作后的图", dstImage);//腐蚀操作的函数 waitKey(); } //膨胀 void fun_pz(Mat img) { //腐蚀和膨胀区别是函数imshow("膨胀操作后的图", dstImage)//和池化操作类似 //卷积核所覆盖下的原图对应区域内的所有像素的最大,用这个最小值替换当前像素值。图片通过这种局部颜色变浅, //导致整体颜色变浅 Mat element = getStructuringElement(MORPH_RECT, Size(10, 10));// Size的参数是卷积核的大小,越大腐蚀越严重。 //Mat element = getStructuringElement(MORPH_RECT, Size(15, 15)); //getStructuringElement获取结构元素 Mat dstImage; dilate(img, dstImage, element);//第一个参数是输入图片,第二个参数是输出图片,第三个是 imshow("膨胀操作后的图", dstImage); //膨胀操作的函数 waitKey(); } 均值滤波 void fun_mh(Mat img) { //图片模糊的本质是对图片进行均值滤波,就是均值池化类似的操作 Mat dstImage; blur(img, dstImage, Size(7, 7));//均值滤波 imshow("均值滤波【效果图】", dstImage); waitKey(); } //中值滤波 中值滤波可以有效滤除椒盐噪声 medianBlur(img1, img2, 3); //也会变模糊,但程度相对较小 imshow("中值滤波后", img2); //均值滤波 均值滤波能够滤除白噪声,但会使原始图像丢掉一些细节(原图变得模糊) blur(img1, img2, Size(3,3)); imshow("均值滤波后", img2); //高斯滤波 一般图像采取的都是高斯滤波 //加权均值滤波(高斯滤波)也可以有效的滤除白噪声,同时不会丢掉原图中的细节(甚至原图更清晰) GaussianBlur(img1, img2, Size(3,3),5);//size的大小调节不好会报错size越大越模糊 imshow("高斯滤波后", img2); //转灰度图,进行边缘轮廓检测 void fun_hd(Mat img) { //将图片变成灰度图 Mat dstImage,img1; blur(img, dstImage, Size(4, 4));//1、均值滤波 cvtColor(dstImage, dstImage, COLOR_BGR2GRAY);//2、转成灰度图 cout << dstImage.at<Vec3b>(2, 2)[1]; imshow("灰度图", dstImage); Canny(dstImage, img1, 50, 120, 3); //3、使用边缘检测 //canny 第一个数字越大 imshow("边缘检测", img1); waitKey(0); } void fun(Mat img1) { Mat img; //创建相同大小相同类型的矩阵 img.create(img1.size(),img1.type()); img.create(img1.size(), CV_32FC3); img = img1.clone(); img.rows;//行 img.cols;//列 } void fun_readvido() { //如果有视屏,则读取视屏,如果没有视屏参数写0,调用本地摄像头 //VideoCapture cap("C:\\Users\\MH\\Desktop\\常用工具类\\壁纸\\1.avi"); VideoCapture cap(0); while(1) { Mat frame; cap >> frame; Mat dstImage, img1; imshow("读取视屏", img1); waitKey(10); } } //随机产生椒盐噪声 Mat fun_1(Mat img1, int k) { Mat img = img1.clone(); int i, j; for (int m = 0; m < k; m++) {//循环k次,随机产生k个点 i = rand() % img.rows; //img.at<Vec3b>(i, j)[0] = 0; i代表行下标(高rows),j代表列下标写反位置会报错 j = rand() % img.cols;//产生随机的下标点 img.at<Vec3b>(i, j)[0] = 0; img.at<Vec3b>(i, j)[1] = 0; img.at<Vec3b>(i, j)[2] = 0; } for (int m = 0; m <int(k / 2); m++) { i = rand() % img.rows; j = rand() % img.cols; img.at<Vec3b>(i, j)[0] = 255; img.at<Vec3b>(i, j)[1] = 255; img.at<Vec3b>(i, j)[2] = 255; } return img; } //log图像增强 Mat fun_log(Mat img) { Mat img1; float C = 0.5; img1.create(img.size(), CV_32FC3); for (int i = 0; i < img.rows; i++) { for (int j = 0; j < img.cols; j++) { img1.at<Vec3f>(i, j)[0] = C * log(1+float(img.at<Vec3b>(i, j)[0])); img1.at<Vec3f>(i, j)[1] = C * log(1+float(img.at<Vec3b>(i, j)[1])); img1.at<Vec3f>(i, j)[2] = C * log(1+float(img.at<Vec3b>(i, j)[2])); } } //归一化到0~255 normalize(img1, img1, 0, 255, CV_MINMAX); //转换成8bit图像显示 convertScaleAbs(img1, img1); return img1; } //指数对图片进行放暗 Mat fun_3(Mat img) { int c = 3; float b = 0.1; Mat img1; //img1 = img.clone(); img1.create(img.size(), CV_32FC3);//32位的图像像素灰度值在(0-1)之间的显示是正常显示,也可以将其转化成0-255,然后转乘8bit的图 for (int m = 0; m < img.rows; m++) { for (int j = 0; j < img.cols; j++) { img1.at<Vec3f>(m, j)[0] = float(img.at<Vec3b>(m, j)[0]) / 255 * float(img.at<Vec3b>(m, j)[0]) / 255; img1.at<Vec3f>(m, j)[1] = float(img.at<Vec3b>(m, j)[1]) / 255 * float(img.at<Vec3b>(m, j)[1]) / 255; img1.at<Vec3f>(m, j)[2] = float(img.at<Vec3b>(m, j)[2]) / 255 * float(img.at<Vec3b>(m, j)[2]) / 255; } } return img1; } //霍夫变换+图像旋转校正+背景填充 //二值化 Mat fun_two(Mat img) { float a = 110; for (int i = 0; i < img.rows; i++) { for (int j = 0; j < img.cols; j++) { if (0.3*img.at<Vec3b>(i, j)[0] + 0.6*img.at<Vec3b>(i, j)[1] + 0.1*img.at<Vec3b>(i, j)[2] > a) { img.at<Vec3b>(i, j)[0] = 255; img.at<Vec3b>(i, j)[1] = 255; img.at<Vec3b>(i, j)[2] = 255; } else { img.at<Vec3b>(i, j)[0] = 0; img.at<Vec3b>(i, j)[1] = 0; img.at<Vec3b>(i, j)[2] = 0; } } } return img; } //背景 Mat fun_bj(Mat img, float a, float b, float c) { for (int i = 0; i < img.rows; i++) { for (int j = 0; j < img.cols; j++) { if (0.3*img.at<Vec3b>(i, j)[0] + 0.6*img.at<Vec3b>(i, j)[1] + 0.1*img.at<Vec3b>(i, j)[2] == 255) { img.at<Vec3b>(i, j)[0] = a; img.at<Vec3b>(i, j)[1] = b; img.at<Vec3b>(i, j)[2] = c; } else { img.at<Vec3b>(i, j)[0] = 0; img.at<Vec3b>(i, j)[1] = 0; img.at<Vec3b>(i, j)[2] = 0; } } } return img; } //画线的函数 void fun_line(vector<Vec2f> lines, Mat img) { for (size_t i = 0; i < lines.size(); i++) { float rho = lines[i][0]; float theta = lines[i][1]; double a = cos(theta), b = sin(theta); double x0 = a * rho, y0 = b * rho; Point pt1(cvRound(x0 + 1000 * (-b)), cvRound(y0 + 1000 * (a))); Point pt2(cvRound(x0 - 1000 * (-b)), cvRound(y0 - 1000 * (a))); line(img, pt1, pt2, Scalar(0, 0, 255), 3, 8); } imshow("线性图", img); } //图片旋转//放射变换 Mat rotateImage(Mat img, double jd) { Mat img1; //旋转中心为图像中心 Point2f center; center.x = float(img.cols / 2.0); center.y = float(img.rows / 2.0); int length = 0; length = sqrt(img.cols*img.cols + img.rows*img.rows); //计算二维旋转的仿射变换矩阵 Mat M = getRotationMatrix2D(center, jd, 1); warpAffine(img, img1, M, Size(length, length), 1, 0, Scalar(255, 255, 255));//仿射变换,背景色填充为白色 return img1; } int main() { Mat imroa, img3; float a, b, c;// imroa = imread("C:\\Users\\MH\\Desktop\\pInFileName.jpg"); a = imroa.at<Vec3b>(int(imroa.rows*0.9), int(imroa.rows*0.6))[0]; b = imroa.at<Vec3b>(int(imroa.rows*0.9), int(imroa.rows*0.6))[1]; c = imroa.at<Vec3b>(int(imroa.rows*0.9), int(imroa.rows*0.6))[2]; imshow("原图", imroa); for (int i = 0; i < 10; i++) { medianBlur(imroa, imroa, 7);//第三个参数一般设为奇数 } blur(imroa, imroa, Size(5, 5)); img3 = imroa.clone(); cvtColor(imroa, imroa, COLOR_BGR2GRAY); Canny(imroa, imroa, 50, 200, 3); vector<Vec2f> lines; //霍夫变换,获取直线对象 HoughLines(imroa, lines, 1, CV_PI / 180, 300, 0, 0); //// 输入,线条对象,极径的步长,角度的步长,阈值(阈值越大对直线要求越高,提取的直线数量越少) float sum = 0; for (size_t i = 0; i < lines.size(); i++) { sum += lines[i][1]; } float jd = sum / lines.size() / CV_PI * 180; cout << lines.size() << endl; cout << jd; //二值化 img3 = fun_two(img3); fun_line(lines,img3); Mat img2; //旋转 img2 = rotateImage(img3, jd); //imshow("中值滤波后", imroa); //imroa = fun_two(imroa); //imshow("二值化", imroa); //背景颜色填充裁剪 Mat img4; fun_bj(img2, a, b, c); imshow("填充", img2); waitKey(); return 0; }
图像处理的基本思路:
转载于:https://www.cnblogs.com/zgl19991001/p/11420844.html