证明 n 等于它所有的因子的欧拉函数之和

当 n 是质数时,易证。

当 n 是合数时,可以把 n 分解 n= ,紧接着求 n 的因子,就是从 n 分解后的东西中选质因子和质因子的幂数,

当 m>1 时,那么可得 ,因为都小于n,所以可以用归纳法,证明成立。

当 m=1 时,也易证。

 

另一种证明方法是来自《信息安全数学基础》(陈恭亮)。

转载于:https://www.cnblogs.com/ahahah/p/4918145.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值